dc.contributor.author | Teso Fernández de Betoño, Daniel | |
dc.contributor.author | Zulueta Guerrero, Ekaitz | |
dc.contributor.author | Fernández Gámiz, Unai | |
dc.contributor.author | Sáenz Aguirre, Aitor | |
dc.contributor.author | Martínez Rodríguez, Raquel | |
dc.date.accessioned | 2020-01-08T13:28:06Z | |
dc.date.available | 2020-01-08T13:28:06Z | |
dc.date.issued | 2019-08-26 | |
dc.identifier.citation | Electronics 8(9) : (2019) // Article ID 935 | es_ES |
dc.identifier.issn | 2079-9292 | |
dc.identifier.uri | http://hdl.handle.net/10810/37530 | |
dc.description.abstract | The aim of this paper is to improve the dynamic window approach algorithm for mobile robots by implementing a prediction window with a fuzzy inference system to adapt to fixed parameters, depending on the surrounding conditions. The first implementation shows the advantage of the prediction step in terms of optimizing the path selection. The second improvement uses fuzzy inference to optimize each of the fixed parameters' values to increase the algorithm performance. Nevertheless, a simple fuzzy inference system (FIS) was not used for this particular study; instead, an artificial neuro-fuzzy inference system (ANFIS) was used, thus making it possible to develop a FIS system with a back-propagation technique. Each parameter would have a particular ANFIS, in order to modify the alpha(D), beta(D), and gamma(D) parameters individually. At the end of the article, different scenarios are analyzed to determine whether the developments in this article have improved the DWA behavior. The results show that the prediction step and ANFIS adapt DWA performance by optimizing the path resolution. | es_ES |
dc.description.sponsorship | This research was financed by the plant of Mercedes-Benz Vitoria through PIF program to develop an intelligent production. | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | MDPI | es_ES |
dc.rights | info:eu-repo/semantics/openAccess | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by/3.0/es/ | * |
dc.subject | DWA | es_ES |
dc.subject | ANFIS | es_ES |
dc.subject | motion planning | es_ES |
dc.subject | mobile robots | es_ES |
dc.subject | obstacle avoidance | es_ES |
dc.subject | fuzzy logic | es_ES |
dc.subject | MPC | es_ES |
dc.title | Predictive Dynamic Window Approach Development with Artificial Neural Fuzzy Inference Improvement | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.rights.holder | This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/). | es_ES |
dc.rights.holder | Atribución 3.0 España | * |
dc.relation.publisherversion | https://www.mdpi.com/2079-9292/8/9/935 | es_ES |
dc.identifier.doi | 10.3390/electronics8090935 | |
dc.departamentoes | Ingeniería de sistemas y automática | es_ES |
dc.departamentoes | Ingeniería nuclear y mecánica de fluidos | es_ES |
dc.departamentoeu | Ingeniaritza nuklearra eta jariakinen mekanika | es_ES |
dc.departamentoeu | Sistemen ingeniaritza eta automatika | es_ES |