Show simple item record

dc.contributor.authorMzoughi, Fares
dc.contributor.authorGarrido Hernández, Izaskun ORCID
dc.contributor.authorGarrido Hernández, Aitor Josu ORCID
dc.contributor.authorDe la Sen Parte, Manuel ORCID
dc.date.accessioned2020-03-26T18:47:11Z
dc.date.available2020-03-26T18:47:11Z
dc.date.issued2020-01-29
dc.identifier.citationSensors 20(5) : (2020) // Aricle ID 1352es_ES
dc.identifier.issn1424-8220
dc.identifier.urihttp://hdl.handle.net/10810/42389
dc.description.abstractOscillating water column (OWC) plants face power generation limitations due to the stalling phenomenon. This behavior can be avoided by an airflow control strategy that can anticipate the incoming peak waves and reduce its airflow velocity within the turbine duct. In this sense, this work aims to use the power of artificial neural networks (ANN) to recognize the different incoming waves in order to distinguish the strong waves that provoke the stalling behavior and generate a suitable airflow speed reference for the airflow control scheme. The ANN is, therefore, trained using real surface elevation measurements of the waves. The ANN-based airflow control will control an air valve in the capture chamber to adjust the airflow speed as required. A comparative study has been carried out to compare the ANN-based airflow control to the uncontrolled OWC system in different sea conditions. Also, another study has been carried out using real measured wave input data and generated power of the NEREIDA wave power plant. Results show the effectiveness of the proposed ANN airflow control against the uncontrolled case ensuring power generation improvement.es_ES
dc.description.sponsorshipThis work was supported in part by the Basque Government, through project IT1207-19 and by the MCIU/MINECO through RTI2018-094902-B-C21/RTI2018-094902-B-C22 (MCIU/AEI/FEDER, UE).es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.relationinfo:eu-repo/grantAgreement/MCIU/RTI2018-094902-B-C21es_ES
dc.relationinfo:eu-repo/grantAgreement/MCIU/RTI2018-094902-B-C22es_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/
dc.subjectacoustic doppler current profileres_ES
dc.subjectairflow controles_ES
dc.subjectartificial neural networkes_ES
dc.subjectoscillating water columnes_ES
dc.subjectpower generationes_ES
dc.subjectstalling behaviores_ES
dc.subjectwave energyes_ES
dc.subjectWells turbinees_ES
dc.titleANN-Based Airflow Control for an Oscillating Water Column Using Surface Elevation Measurementses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.date.updated2020-03-13T13:10:04Z
dc.rights.holder© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).es_ES
dc.relation.publisherversionhttps://www.mdpi.com/1424-8220/20/5/1352es_ES
dc.identifier.doi10.3390/s20051352
dc.departamentoesIngeniería de sistemas y automática
dc.departamentoesElectricidad y electrónica
dc.departamentoeuSistemen ingeniaritza eta automatika
dc.departamentoeuElektrizitatea eta elektronika


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Except where otherwise noted, this item's license is described as © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).