Show simple item record

dc.contributor.authorMéndez Aretxabaleta, Xabier
dc.contributor.authorGonchenko, Marina
dc.contributor.authorHarshman, Nathan L.
dc.contributor.authorJackson, Steven Glenn
dc.contributor.authorOlshanii, Maxim
dc.contributor.authorAstrakharchik, Grigory E.
dc.date.accessioned2020-05-18T16:03:16Z
dc.date.available2020-05-18T16:03:16Z
dc.date.issued2020-04-02
dc.identifier.citationMathematics 8(4): (2020) // Article ID 509es_ES
dc.identifier.issn2227-7390
dc.identifier.urihttp://hdl.handle.net/10810/43254
dc.description.abstractIn Galperin billiards, two balls colliding with a hard wall form an analog calculator for the digits of the number π . This classical, one-dimensional three-body system (counting the hard wall) calculates the digits of π in a base determined by the ratio of the masses of the two particles. This base can be any integer, but it can also be an irrational number, or even the base can be π itself. This article reviews previous results for Galperin billiards and then pushes these results farther. We provide a complete explicit solution for the balls’ positions and velocities as a function of the collision number and time. We demonstrate that Galperin billiard can be mapped onto a two-particle Calogero-type model. We identify a second dynamical invariant for any mass ratio that provides integrability for the system, and for a sequence of specific mass ratios we identify a third dynamical invariant that establishes superintegrability. Integrability allows us to derive some new exact results for trajectories, and we apply these solutions to analyze the systematic errors that occur in calculating the digits of π with Galperin billiards, including curious cases with irrational number bases.es_ES
dc.description.sponsorshipThe research leading to these results received funding from the MICINN (Spain) Grant No. FIS2017-84114-C2-1-P. M.G. has been partially supported by Juan de la Cierva-Formación FJCI-2014-21229 and Juan de la Cierva-Incorporación IJCI-2016-29071 fellowships, the Spanish grants MICIIN/FEDER MTM2015-65715-P, MTM2016-80117-P (MINECO/FEDER, UE), PGC2018-098676-B-I00 (AEI/FEDER/UE) and the Catalan grant 2017SGR1374. M.O. acknowledges financial support from the National Science Foundation grants PHY-1607221 and PHY-1912542 and the US-Israel Binational Science Foundation grant 2015616.es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.relationinfo:eu-repo/grantAgreement/MICINN/FIS2017-84114-C2-1-Pes_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/
dc.subjectGalperin billiardses_ES
dc.subjectcalculating pies_ES
dc.subjectthree-body problemes_ES
dc.subjectsolvable modeles_ES
dc.subjectintegrabilityes_ES
dc.subjectsuperintegrabilityes_ES
dc.subjectirrational baseses_ES
dc.titleThe Dynamics of Digits: Calculating Pi with Galperin’s Billiardses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.date.updated2020-05-14T13:55:29Z
dc.rights.holder© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/)es_ES
dc.relation.publisherversionhttps://www.mdpi.com/2227-7390/8/4/509es_ES
dc.identifier.doi10.3390/math8040509
dc.departamentoesFísica aplicada II
dc.departamentoeuFisika aplikatua II


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/)
Except where otherwise noted, this item's license is described as © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/)