Show simple item record

dc.contributor.authorKanwal, Tanzeela
dc.contributor.authorHussain, Azhar
dc.contributor.authorBaghani, Hamid
dc.contributor.authorDe la Sen Parte, Manuel ORCID
dc.date.accessioned2020-05-29T07:08:30Z
dc.date.available2020-05-29T07:08:30Z
dc.date.issued2020-05-19
dc.identifier.citationSymmetry 12(5) : (2020) // Article ID 832es_ES
dc.identifier.issn2073-8994
dc.identifier.urihttp://hdl.handle.net/10810/43614
dc.description.abstractWe present the notion of orthogonal F -metric spaces and prove some fixed and periodic point theorems for orthogonal ⊥Ω -contraction. We give a nontrivial example to prove the validity of our result. Finally, as application, we prove the existence and uniqueness of the solution of a nonlinear fractional differential equation.es_ES
dc.description.sponsorshipThis work was supported by the Basque Government under the Grant IT 1207-19.es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/
dc.subjectorthogonal setes_ES
dc.subjectℱ-metric spacees_ES
dc.subjectBanach fixed point theoremes_ES
dc.titleNew Fixed Point Theorems in Orthogonal F -Metric Spaces with Application to Fractional Differential Equationes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.date.updated2020-05-28T14:08:19Z
dc.rights.holder2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).es_ES
dc.relation.publisherversionhttps://www.mdpi.com/2073-8994/12/5/832/htmes_ES
dc.identifier.doi10.3390/sym12050832
dc.departamentoesElectricidad y electrónica
dc.departamentoeuElektrizitatea eta elektronika


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Except where otherwise noted, this item's license is described as 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).