New Fixed Point Theorems in Orthogonal F -Metric Spaces with Application to Fractional Differential Equation
dc.contributor.author | Kanwal, Tanzeela | |
dc.contributor.author | Hussain, Azhar | |
dc.contributor.author | Baghani, Hamid | |
dc.contributor.author | De la Sen Parte, Manuel | |
dc.date.accessioned | 2020-05-29T07:08:30Z | |
dc.date.available | 2020-05-29T07:08:30Z | |
dc.date.issued | 2020-05-19 | |
dc.identifier.citation | Symmetry 12(5) : (2020) // Article ID 832 | es_ES |
dc.identifier.issn | 2073-8994 | |
dc.identifier.uri | http://hdl.handle.net/10810/43614 | |
dc.description.abstract | We present the notion of orthogonal F -metric spaces and prove some fixed and periodic point theorems for orthogonal ⊥Ω -contraction. We give a nontrivial example to prove the validity of our result. Finally, as application, we prove the existence and uniqueness of the solution of a nonlinear fractional differential equation. | es_ES |
dc.description.sponsorship | This work was supported by the Basque Government under the Grant IT 1207-19. | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | MDPI | es_ES |
dc.rights | info:eu-repo/semantics/openAccess | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by/3.0/es/ | |
dc.subject | orthogonal set | es_ES |
dc.subject | ℱ-metric space | es_ES |
dc.subject | Banach fixed point theorem | es_ES |
dc.title | New Fixed Point Theorems in Orthogonal F -Metric Spaces with Application to Fractional Differential Equation | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.date.updated | 2020-05-28T14:08:19Z | |
dc.rights.holder | 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). | es_ES |
dc.relation.publisherversion | https://www.mdpi.com/2073-8994/12/5/832/htm | es_ES |
dc.identifier.doi | 10.3390/sym12050832 | |
dc.departamentoes | Electricidad y electrónica | |
dc.departamentoeu | Elektrizitatea eta elektronika |
Files in this item
This item appears in the following Collection(s)
Except where otherwise noted, this item's license is described as 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).