Show simple item record

dc.contributor.authorTeso Fernández de Betoño, Daniel ORCID
dc.contributor.authorZulueta Guerrero, Ekaitz
dc.contributor.authorSánchez Chica, Ander
dc.contributor.authorFernández Gámiz, Unai
dc.contributor.authorSáenz Aguirre, Aitor
dc.date.accessioned2020-05-29T12:13:19Z
dc.date.available2020-05-29T12:13:19Z
dc.date.issued2020-05-25
dc.identifier.citationMathematics 8(5) : (2020) // Article ID 855es_ES
dc.identifier.issn2227-7390
dc.identifier.urihttp://hdl.handle.net/10810/43623
dc.description.abstractIn this study, a semantic segmentation network is presented to develop an indoor navigation system for a mobile robot. Semantic segmentation can be applied by adopting different techniques, such as a convolutional neural network (CNN). However, in the present work, a residual neural network is implemented by engaging in ResNet-18 transfer learning to distinguish between the floor, which is the navigation free space, and the walls, which are the obstacles. After the learning process, the semantic segmentation floor mask is used to implement indoor navigation and motion calculations for the autonomous mobile robot. This motion calculations are based on how much the estimated path differs from the center vertical line. The highest point is used to move the motors toward that direction. In this way, the robot can move in a real scenario by avoiding different obstacles. Finally, the results are collected by analyzing the motor duty cycle and the neural network execution time to review the robot’s performance. Moreover, a different net comparison is made to determine other architectures’ reaction times and accuracy values.es_ES
dc.description.sponsorshipThis research was financed by the plant of Mercedes-Benz Vitoria through the PIF program to develop an intelligent production. Moreover, The Regional Development Agency of the Basque Country (SPRI) is gratefully acknowledged for their economic support through the research project “Motor de Accionamiento para Robot Guiado Automáticamente”, KK-2019/00099, Programa ELKARTEK.es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/
dc.subjectindoor navigationes_ES
dc.subjectsemantic segmentationes_ES
dc.subjectfully convolutional networkses_ES
dc.subjectobstacle detectiones_ES
dc.subjectautonomous mobile robotes_ES
dc.subjectResNetes_ES
dc.subjectUnetes_ES
dc.subjectSegnetes_ES
dc.titleSemantic Segmentation to Develop an Indoor Navigation System for an Autonomous Mobile Robotes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.date.updated2020-05-28T14:08:58Z
dc.rights.holder2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).es_ES
dc.relation.publisherversionhttps://www.mdpi.com/2227-7390/8/5/855/htmes_ES
dc.identifier.doi10.3390/math8050855
dc.departamentoesIngeniería de sistemas y automática
dc.departamentoesIngeniería nuclear y mecánica de fluidos
dc.departamentoeuSistemen ingeniaritza eta automatika
dc.departamentoeuIngeniaritza nuklearra eta jariakinen mekanika


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Except where otherwise noted, this item's license is described as 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).