Show simple item record

dc.contributor.authorNúñez Antón, Vicente Alfredo ORCID
dc.contributor.authorPérez-Salamero González, Juan Manuel
dc.contributor.authorRegúlez Castillo, Marta ORCID
dc.contributor.authorVidal Meliá, Carlos
dc.date.accessioned2020-09-15T10:35:11Z
dc.date.available2020-09-15T10:35:11Z
dc.date.issued2020-07-25
dc.identifier.citationMathematics 8(8) : (2020) // Article ID 1225es_ES
dc.identifier.issn2227-7390
dc.identifier.urihttp://hdl.handle.net/10810/46106
dc.description.abstractThis paper proposes an optimization model for selecting a larger subsample that improves the representativeness of a simple random sample previously obtained from a population larger than the population of interest. The problem formulation involves convex mixed-integer nonlinear programming (convex MINLP) and is, therefore, NP-hard. However, the solution is found by maximizing the size of the subsample taken from a stratified random sample with proportional allocation and restricting it to a p-value large enough to achieve a good fit to the population of interest using Pearson’s chi-square goodness-of-fit test. The paper also applies the model to the Continuous Sample of Working Lives (CSWL), which is a set of anonymized microdata containing information on individuals from Spanish Social Security records and the results prove that it is possible to obtain a larger subsample from the CSWL that (far) better represents the pensioner population for each of the waves analyzed.es_ES
dc.description.sponsorshipThis research was funded by the Ministerio de Economía y Competitividad (Spain) and the Basque Government for projects ECO2015-65826-P, IT 793-13 and IT1336-19, respectively, and Ministerio de Economía y Competitividad, Agencia Estatal de Investigación (AEI), Fondo Europeo de Desarrollo Regional (FEDER), the Department of Education of the Basque Government (UPV/EHU Econometrics Research Group), Universidad del País Vasco UPV/EHU and Generalidad Valenciana (Valencian Government) under research grants MTM2016-74931-P (AEI/FEDER, UE), IT-642-13, IT1359-19, UFI11/03, and AICO/2019/075.es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.relationinfo:eu-repo/grantAgreement/MINECO/MTM2016-74931-Pes_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/
dc.subjectchi-square testes_ES
dc.subjectcontinuous sample of working liveses_ES
dc.subjectoptimizationes_ES
dc.subjectp-valuees_ES
dc.subjectsubsamplinges_ES
dc.titleImproving the Representativeness of a Simple Random Sample: An Optimization Model and Its Application to the Continuous Sample of Working Liveses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.date.updated2020-08-21T13:49:39Z
dc.rights.holder2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).es_ES
dc.relation.publisherversionhttps://www.mdpi.com/2227-7390/8/8/1225es_ES
dc.identifier.doi10.3390/math8081225
dc.departamentoesEconomía aplicada III (Econometría y Estadística)
dc.departamentoeuEkonomia aplikatua III (ekonometria eta estatistika)


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Except where otherwise noted, this item's license is described as 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).