Show simple item record

dc.contributor.authorLiebau, Jobst
dc.contributor.authorTersa Peñacoba, Montserrat
dc.contributor.authorTrastoy, Beatriz
dc.contributor.authorPatrick, Joan
dc.contributor.authorRodrigo Unzueta, Ane
dc.contributor.authorCorzana, Francisco
dc.contributor.authorSparrman, Tobias
dc.contributor.authorGuerín, Marcelo Eduardo
dc.contributor.authorMäler, Lena
dc.date.accessioned2020-12-16T13:16:45Z
dc.date.available2020-12-16T13:16:45Z
dc.date.issued2020-07-17
dc.identifier.citationJournal of Biological Chemistry 295(29) : 9868-9878 (2020)es_ES
dc.identifier.issn0021-9258
dc.identifier.issn1083-351X
dc.identifier.urihttp://hdl.handle.net/10810/49117
dc.description.abstractFold-switch pathways remodel the secondary structure topology of proteins in response to the cellular environment. It is a major challenge to understand the dynamics of these folding processes. Here, we conducted an in-depth analysis of the ?-helix?to??-strand and ?-strand?to??-helix transitions and domain motions displayed by the essential mannosyltransferase PimA from mycobacteria. Using(19)F NMR, we identified four functionally relevant states of PimA that coexist in dynamic equilibria on millisecond-to-second timescales in solution. We discovered that fold-switching is a slow process, on the order of seconds, whereas domain motions occur simultaneously but are substantially faster, on the order of milliseconds. Strikingly, the addition of substrate accelerated the fold-switching dynamics of PimA. We propose a model in which the fold-switching dynamics constitute a mechanism for PimA activation.es_ES
dc.description.sponsorshipThis work was supported by grants from the Swedish Research Council Contract 621-2014-3706 (to L. M.), the MINECO, FEDER-EU contract BFU2016-77427-C22-R and contract BFU2017-92223-EXP, the Severo Ochoa Excellence Accreditation SEV-2016-0644 (to M. E. G.) and RTI2018-099592-BC21 (to F. C.), and the Basque Government contract KK-2019/00076 (to M. E. G.). The Knut and Alice Wallenberg Foundation is acknowledged for financial support for the "NMR for Life" program.es_ES
dc.language.isoenges_ES
dc.publisherAmerican Society for Biochemistry and Molecular Biologyes_ES
dc.relationinfo:eu-repo/grantAgreement/MINECO/BFU2016-77427-C22-Res_ES
dc.relationinfo:eu-repo/grantAgreement/MINECO/BFU2017-92223-EXPes_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.subjectprotein structurees_ES
dc.subjectprotein fold-switchinges_ES
dc.subjectprotein dynamicses_ES
dc.subjectconformational dynamicses_ES
dc.subjectprotein functiones_ES
dc.subjectenzyme catalysises_ES
dc.subjectF-19 NMRes_ES
dc.subjectrelaxation dispersiones_ES
dc.subjectcarbohydrate active enzymeses_ES
dc.subjectglycosyltransferaseses_ES
dc.subjectnuclear-magnetic-resonancees_ES
dc.subjectmolecular-dynamicses_ES
dc.subjectmannosyltransferase PimAes_ES
dc.subjectconformational plasticityes_ES
dc.subjectcircular-dichroismes_ES
dc.subjectprotein-structurees_ES
dc.subjectenergy landscapees_ES
dc.subjectligand-bindinges_ES
dc.subjectexchangees_ES
dc.titleUnveiling the activation dynamics of a fold-switch bacterial glycosyltransferase by 19F NMRes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.holder2020 Liebau et al. Published by The American Society for Biochemistry and Molecular Biology, Inc. Author's Choice—Final version open access under the terms of theCreativeCommons CC-BY license.es_ES
dc.rights.holderAtribución 3.0 España*
dc.relation.publisherversionhttps://www.jbc.org/content/295/29/9868es_ES
dc.identifier.doi10.1074/jbc.RA120.014162
dc.departamentoesBioquímica y biología moleculares_ES
dc.departamentoeuBiokimika eta biologia molekularraes_ES


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

2020 Liebau et al. Published by The American Society for Biochemistry and Molecular Biology, Inc. Author's Choice—Final version open access under the terms of theCreativeCommons CC-BY license.
Except where otherwise noted, this item's license is described as 2020 Liebau et al. Published by The American Society for Biochemistry and Molecular Biology, Inc. Author's Choice—Final version open access under the terms of theCreativeCommons CC-BY license.