Show simple item record

dc.contributor.authorLópez de Ipiña Peña, Miren Karmele
dc.contributor.authorMartínez de Lizarduy Sturtze, Unai
dc.contributor.authorCalvo Salomón, Pilar María
dc.contributor.authorBeitia Bengoa, Blanca
dc.contributor.authorGarcía Melero, Joseba
dc.contributor.authorFernández Gómez de Segura, Elsa
dc.contributor.authorEcay Torres, Miriam
dc.contributor.authorFaúndez Zanuy, Marcos
dc.contributor.authorSanz, P.
dc.date.accessioned2021-02-18T13:03:18Z
dc.date.available2021-02-18T13:03:18Z
dc.date.issued2020-10
dc.identifier.citationNeural Computing and Applications 32(20) : 15761-15769 (2020)es_ES
dc.identifier.issn0941-0643
dc.identifier.issn1433-3058
dc.identifier.urihttp://hdl.handle.net/10810/50209
dc.description.abstractAlzheimer's disease is characterized by a progressive and irreversible cognitive deterioration. In a previous stage, the so-called Mild Cognitive Impairment or cognitive loss appears. Nevertheless, this previous stage does not seem sufficiently severe to interfere in independent abilities of daily life, so it is usually diagnosed inappropriately. Thus, its detection is a crucial challenge to be addressed by medical specialists. This paper presents a novel proposal for such early diagnosis based on automatic analysis of speech and disfluencies, and Deep Learning methodologies. The proposed tools could be useful for supporting Mild Cognitive Impairment diagnosis. The Deep Learning approach includes Convolutional Neural Networks and nonlinear multifeature modeling. Additionally, an automatic hybrid methodology is used in order to select the most relevant features by means of nonparametric Mann-Whitney U test and Support Vector Machine Attribute evaluation.es_ES
dc.description.sponsorshipThis work has been supported by FEDER and MICINN, TEC2016-77,791-C4-2-R, and UPV/EHU-Basque Research Groups IT11156 and Basque Country EleKin Research Groupes_ES
dc.language.isoenges_ES
dc.publisherSpringeres_ES
dc.relationinfo:eu-repo/grantAgreement/MICINN/TEC2016-77791-C4-2-Res_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.subjectmild cognitive impairmentes_ES
dc.subjectautomatic speech analysises_ES
dc.subjectdeep learninges_ES
dc.subjectconvolutional neural networkses_ES
dc.subjectnonlinear featureses_ES
dc.subjectdisfluencieses_ES
dc.subjectalzheimerses_ES
dc.subjectdiseasees_ES
dc.titleOn the Analysis of Speech and Disfluencies for Automatic Detection of Mild Cognitive Impairmentes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.holderThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0)es_ES
dc.rights.holderAtribución 3.0 España*
dc.relation.publisherversionhttps://link-springer-com.ehu.idm.oclc.org/article/10.1007/s00521-018-3494-1es_ES
dc.identifier.doi10.1007/s00521-018-3494-1
dc.departamentoesArquitectura y Tecnología de Computadoreses_ES
dc.departamentoesIngeniería de sistemas y automáticaes_ES
dc.departamentoesIngeniería mecánicaes_ES
dc.departamentoesMatemática aplicadaes_ES
dc.departamentoesTecnología electrónicaes_ES
dc.departamentoeuIngeniaritza mekanikoaes_ES
dc.departamentoeuKonputagailuen Arkitektura eta Teknologiaes_ES
dc.departamentoeuMatematika aplikatuaes_ES
dc.departamentoeuSistemen ingeniaritza eta automatikaes_ES
dc.departamentoeuTeknologia elektronikoaes_ES


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0)
Except where otherwise noted, this item's license is described as This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0)