dc.contributor.author | López de Ipiña Peña, Miren Karmele | |
dc.contributor.author | Martínez de Lizarduy Sturtze, Unai | |
dc.contributor.author | Calvo Salomón, Pilar María | |
dc.contributor.author | Beitia Bengoa, Blanca | |
dc.contributor.author | García Melero, Joseba | |
dc.contributor.author | Fernández Gómez de Segura, Elsa | |
dc.contributor.author | Ecay Torres, Miriam | |
dc.contributor.author | Faúndez Zanuy, Marcos | |
dc.contributor.author | Sanz, P. | |
dc.date.accessioned | 2021-02-18T13:03:18Z | |
dc.date.available | 2021-02-18T13:03:18Z | |
dc.date.issued | 2020-10 | |
dc.identifier.citation | Neural Computing and Applications 32(20) : 15761-15769 (2020) | es_ES |
dc.identifier.issn | 0941-0643 | |
dc.identifier.issn | 1433-3058 | |
dc.identifier.uri | http://hdl.handle.net/10810/50209 | |
dc.description.abstract | Alzheimer's disease is characterized by a progressive and irreversible cognitive deterioration. In a previous stage, the so-called Mild Cognitive Impairment or cognitive loss appears. Nevertheless, this previous stage does not seem sufficiently severe to interfere in independent abilities of daily life, so it is usually diagnosed inappropriately. Thus, its detection is a crucial challenge to be addressed by medical specialists. This paper presents a novel proposal for such early diagnosis based on automatic analysis of speech and disfluencies, and Deep Learning methodologies. The proposed tools could be useful for supporting Mild Cognitive Impairment diagnosis. The Deep Learning approach includes Convolutional Neural Networks and nonlinear multifeature modeling. Additionally, an automatic hybrid methodology is used in order to select the most relevant features by means of nonparametric Mann-Whitney U test and Support Vector Machine Attribute evaluation. | es_ES |
dc.description.sponsorship | This work has been supported by FEDER and MICINN, TEC2016-77,791-C4-2-R, and UPV/EHU-Basque Research Groups IT11156 and Basque Country EleKin Research Group | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Springer | es_ES |
dc.relation | info:eu-repo/grantAgreement/MICINN/TEC2016-77791-C4-2-R | es_ES |
dc.rights | info:eu-repo/semantics/openAccess | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by/3.0/es/ | * |
dc.subject | mild cognitive impairment | es_ES |
dc.subject | automatic speech analysis | es_ES |
dc.subject | deep learning | es_ES |
dc.subject | convolutional neural networks | es_ES |
dc.subject | nonlinear features | es_ES |
dc.subject | disfluencies | es_ES |
dc.subject | alzheimers | es_ES |
dc.subject | disease | es_ES |
dc.title | On the Analysis of Speech and Disfluencies for Automatic Detection of Mild Cognitive Impairment | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.rights.holder | This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0) | es_ES |
dc.rights.holder | Atribución 3.0 España | * |
dc.relation.publisherversion | https://link-springer-com.ehu.idm.oclc.org/article/10.1007/s00521-018-3494-1 | es_ES |
dc.identifier.doi | 10.1007/s00521-018-3494-1 | |
dc.departamentoes | Arquitectura y Tecnología de Computadores | es_ES |
dc.departamentoes | Ingeniería de sistemas y automática | es_ES |
dc.departamentoes | Ingeniería mecánica | es_ES |
dc.departamentoes | Matemática aplicada | es_ES |
dc.departamentoes | Tecnología electrónica | es_ES |
dc.departamentoeu | Ingeniaritza mekanikoa | es_ES |
dc.departamentoeu | Konputagailuen Arkitektura eta Teknologia | es_ES |
dc.departamentoeu | Matematika aplikatua | es_ES |
dc.departamentoeu | Sistemen ingeniaritza eta automatika | es_ES |
dc.departamentoeu | Teknologia elektronikoa | es_ES |