Differential Evolution Optimal Parameters Tuning with Artificial Neural Network
dc.contributor.author | Centeno Telleria, Manu | |
dc.contributor.author | Zulueta Guerrero, Ekaitz | |
dc.contributor.author | Fernández Gámiz, Unai | |
dc.contributor.author | Teso Fernández de Betoño, Daniel | |
dc.contributor.author | Teso Fernández de Betoño, Adrián | |
dc.date.accessioned | 2021-03-04T11:57:48Z | |
dc.date.available | 2021-03-04T11:57:48Z | |
dc.date.issued | 2021-02-21 | |
dc.identifier.citation | Mathematics 9(4) : (2021) // Article ID 427 | es_ES |
dc.identifier.issn | 2227-7390 | |
dc.identifier.uri | http://hdl.handle.net/10810/50475 | |
dc.description.abstract | Differential evolution (DE) is a simple and efficient population-based stochastic algorithm for solving global numerical optimization problems. DE largely depends on algorithm parameter values and search strategy. Knowledge on how to tune the best values of these parameters is scarce. This paper aims to present a consistent methodology for tuning optimal parameters. At the heart of the methodology is the use of an artificial neural network (ANN) that learns to draw links between the algorithm performance and parameter values. To do so, first, a data-set is generated and normalized, then the ANN approach is performed, and finally, the best parameter values are extracted. The proposed method is evaluated on a set of 24 test problems from the Black-Box Optimization Benchmarking (BBOB) benchmark. Experimental results show that three distinct cases may arise with the application of this method. For each case, specifications about the procedure to follow are given. Finally, a comparison with four tuning rules is performed in order to verify and validate the proposed method’s performance. This study provides a thorough insight into optimal parameter tuning, which may be of great use for users. | es_ES |
dc.description.sponsorship | The authors appreciate the support to the government of the Basque Country through research programs Grants N. ELKARTEK 20/71 and ELKARTEK: KK-2019/00099. | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | MDPI | es_ES |
dc.rights | info:eu-repo/semantics/openAccess | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by/3.0/es/ | |
dc.subject | evolutionary algorithm | es_ES |
dc.subject | differential evolution | es_ES |
dc.subject | parameter tuning | es_ES |
dc.subject | artificial neural network | es_ES |
dc.title | Differential Evolution Optimal Parameters Tuning with Artificial Neural Network | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.date.updated | 2021-02-26T14:44:15Z | |
dc.rights.holder | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). | es_ES |
dc.relation.publisherversion | https://www.mdpi.com/2227-7390/9/4/427/htm | es_ES |
dc.identifier.doi | 10.3390/math9040427 | |
dc.departamentoes | Ingeniería de sistemas y automática | |
dc.departamentoes | Ingeniería nuclear y mecánica de fluidos | |
dc.departamentoeu | Sistemen ingeniaritza eta automatika | |
dc.departamentoeu | Ingeniaritza nuklearra eta jariakinen mekanika |
Files in this item
This item appears in the following Collection(s)
Except where otherwise noted, this item's license is described as 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).