Show simple item record

dc.contributor.authorCenteno Telleria, Manu
dc.contributor.authorZulueta Guerrero, Ekaitz
dc.contributor.authorFernández Gámiz, Unai
dc.contributor.authorTeso Fernández de Betoño, Daniel ORCID
dc.contributor.authorTeso Fernández de Betoño, Adrián ORCID
dc.date.accessioned2021-03-04T11:57:48Z
dc.date.available2021-03-04T11:57:48Z
dc.date.issued2021-02-21
dc.identifier.citationMathematics 9(4) : (2021) // Article ID 427es_ES
dc.identifier.issn2227-7390
dc.identifier.urihttp://hdl.handle.net/10810/50475
dc.description.abstractDifferential evolution (DE) is a simple and efficient population-based stochastic algorithm for solving global numerical optimization problems. DE largely depends on algorithm parameter values and search strategy. Knowledge on how to tune the best values of these parameters is scarce. This paper aims to present a consistent methodology for tuning optimal parameters. At the heart of the methodology is the use of an artificial neural network (ANN) that learns to draw links between the algorithm performance and parameter values. To do so, first, a data-set is generated and normalized, then the ANN approach is performed, and finally, the best parameter values are extracted. The proposed method is evaluated on a set of 24 test problems from the Black-Box Optimization Benchmarking (BBOB) benchmark. Experimental results show that three distinct cases may arise with the application of this method. For each case, specifications about the procedure to follow are given. Finally, a comparison with four tuning rules is performed in order to verify and validate the proposed method’s performance. This study provides a thorough insight into optimal parameter tuning, which may be of great use for users.es_ES
dc.description.sponsorshipThe authors appreciate the support to the government of the Basque Country through research programs Grants N. ELKARTEK 20/71 and ELKARTEK: KK-2019/00099.es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/
dc.subjectevolutionary algorithmes_ES
dc.subjectdifferential evolutiones_ES
dc.subjectparameter tuninges_ES
dc.subjectartificial neural networkes_ES
dc.titleDifferential Evolution Optimal Parameters Tuning with Artificial Neural Networkes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.date.updated2021-02-26T14:44:15Z
dc.rights.holder2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).es_ES
dc.relation.publisherversionhttps://www.mdpi.com/2227-7390/9/4/427/htmes_ES
dc.identifier.doi10.3390/math9040427
dc.departamentoesIngeniería de sistemas y automática
dc.departamentoesIngeniería nuclear y mecánica de fluidos
dc.departamentoeuSistemen ingeniaritza eta automatika
dc.departamentoeuIngeniaritza nuklearra eta jariakinen mekanika


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Except where otherwise noted, this item's license is described as 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).