dc.contributor.author | Martínez Galvez, Juan Manuel | |
dc.contributor.author | García Hernando, Maite | |
dc.contributor.author | Benito López, Fernando | |
dc.contributor.author | Basabe Desmonts, Lourdes | |
dc.contributor.author | Shnyrova Zhadan, Anna | |
dc.date.accessioned | 2021-03-16T15:30:57Z | |
dc.date.available | 2021-03-16T15:30:57Z | |
dc.date.issued | 2020-06-29 | |
dc.identifier.citation | Lab on a Chip 20(15) : 2748-2755 (2020) | es_ES |
dc.identifier.issn | 1473-0197 | |
dc.identifier.uri | http://hdl.handle.net/10810/50652 | |
dc.description.abstract | Lipid membrane nanotubes (NTs) are a widespread template for in vitro studies of cellular processes happening at high membrane curvature. Traditionally NTs are manufactured one by one, using sophisticated membrane micromanipulations, while simplified methods for controlled batch production of NTs are in growing demand. Here we propose a lab-on-a-chip (LOC) approach to the simultaneous formation of multiple NTs with length and radius controlled by the chip design. The NTs form upon rolling silica micro-beads covered by lipid lamellas over the pillars of a polymer micro-pillars array. The array´s design and surface chemistry set the geometry of the resulting free-standing NTs. The integration of the array inside a microfluidic chamber further enables fast and turbulence-free addition of components, such as proteins, to multiple preformed NTs. This LOC approach to NTs production is compatible with the use of high power objectives of a fluorescence microscope, making possible real-time quantification of the different modes of the protein activity in a single experiment. | es_ES |
dc.description.sponsorship | This work was partially supported by the Spanish Ministry of Science, Innovation, and Universities grants PGC2018-099971-B-I00, EUR2019-103830, RYC-2014-01419 and BIO2016-80417-P and the Basque Government grants IT1270-19 and IT1271-19. JMMG and MGH acknowledge the predoctoral fellowships from the University of the Basque Country (UPV/EHU). | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | RSC | es_ES |
dc.relation | info:eu-repo/grantAgreement/MCIU/RYC-2014-01419 | es_ES |
dc.relation | info:eu-repo/grantAgreement/MCIU/BIO2016-80417-P | es_ES |
dc.relation | info:eu-repo/grantAgreement/MCIU/PGC2018-099971-B-I00 | es_ES |
dc.relation | info:eu-repo/grantAgreement/MCIU/EUR2019-103830 | es_ES |
dc.rights | info:eu-repo/semantics/openAccess | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/3.0/ | * |
dc.subject | microfluidics | es_ES |
dc.subject | ionogels | es_ES |
dc.subject | lipid membrane nanotubes | es_ES |
dc.title | Microfluidic chip with pillar array for controlled production and observation of lipid membrane nanotubes | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.rights.holder | (cc) 2020 This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence | es_ES |
dc.relation.publisherversion | https://pubs.rsc.org/en/content/articlelanding/2020/LC/D0LC00451K | es_ES |
dc.identifier.doi | 10.1039/D0LC00451K | |
dc.departamentoes | Bioquímica y biología molecular | es_ES |
dc.departamentoes | Química analítica | es_ES |
dc.departamentoes | Zoología y biología celular animal | es_ES |
dc.departamentoeu | Biokimika eta biologia molekularra | es_ES |
dc.departamentoeu | Kimika analitikoa | es_ES |
dc.departamentoeu | Zoologia eta animalia zelulen biologia | es_ES |