Effect of the Addition of Alkaline Earth and Lanthanide Metals for the Modification of the Alumina Support in Ni and Ru Catalysts in CO2 Methanation
dc.contributor.author | Méndez Mateos, David | |
dc.contributor.author | Barrio Cagigal, Victoria Laura | |
dc.contributor.author | Requies Martínez, Jesús María | |
dc.contributor.author | Cambra Ibáñez, José Francisco | |
dc.date.accessioned | 2021-03-30T10:34:54Z | |
dc.date.available | 2021-03-30T10:34:54Z | |
dc.date.issued | 2021-03-09 | |
dc.identifier.citation | Catalysts 11(3) : (2021) // Article ID 353 | es_ES |
dc.identifier.issn | 2073-4344 | |
dc.identifier.uri | http://hdl.handle.net/10810/50825 | |
dc.description.abstract | In order to reduce greenhouse gas emissions, which are reaching alarming levels in the atmosphere, capture, recovery, and transformation of carbon dioxide emitted to methane is considered a potentially profitable process. This transformation, known as methanation, is a catalytic reaction that mainly uses catalysts based on noble metals such as Ru and, although with less efficiency, on transition metals such as Ni. In order to improve the efficiency of these conventional catalysts, the effect of adding alkaline earth metals (Ba, Ca, or Mg at 10 wt%) and lanthanides (La or Ce at 14 wt%) to nickel (13 wt%), ruthenium (1 wt%), or both-based catalysts has been studied at temperatures between 498 and 773 K and 10 bar pressure. The deactivation resistance in presence of H2S was also monitored. The incorporation of La into the catalyst produces interactions between active metal Ni, Ru, or Ru-Ni and the alumina support, as determined by the characterization. This fact results in an improvement in the catalytic activity of the 13Ni/Al2O3 catalyst, which achieves a methane yield of 82% at 680 K for 13Ni/14La-Al2O3, in addition to an increase in H2S deactivation resistance. Furthermore, 89% was achieved for 1Ru-13Ni/14La-Al2O3 at 651 K, but it showed to be more vulnerable to H2S presence. | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | MDPI | es_ES |
dc.rights | info:eu-repo/semantics/openAccess | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by/3.0/es/ | |
dc.subject | methanation | es_ES |
dc.subject | Ni catalysts | es_ES |
dc.subject | alumina | es_ES |
dc.subject | alkaline earth metals | es_ES |
dc.subject | lanthanides | es_ES |
dc.title | Effect of the Addition of Alkaline Earth and Lanthanide Metals for the Modification of the Alumina Support in Ni and Ru Catalysts in CO2 Methanation | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.date.updated | 2021-03-26T14:06:36Z | |
dc.rights.holder | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). | es_ES |
dc.relation.publisherversion | https://www.mdpi.com/2073-4344/11/3/353/htm | es_ES |
dc.identifier.doi | 10.3390/catal11030353 | |
dc.departamentoes | Ingeniería química y del medio ambiente | |
dc.departamentoeu | Ingeniaritza kimikoa eta ingurumenaren ingeniaritza |
Files in this item
This item appears in the following Collection(s)
Except where otherwise noted, this item's license is described as 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).