dc.contributor.author | Chueca Simón, Luis Javier | |
dc.contributor.author | Schell, Tilman | |
dc.contributor.author | Pfenninger, Markus | |
dc.date.accessioned | 2021-04-14T07:52:00Z | |
dc.date.available | 2021-04-14T07:52:00Z | |
dc.date.issued | 2021-05-24 | |
dc.identifier.citation | Philosophical Transactions Of The Royal Society Of London. Series B, Biological Sciences 376(1825) : (2021) // Article ID 20200156 | es_ES |
dc.identifier.issn | 1471-2970 | |
dc.identifier.uri | http://hdl.handle.net/10810/50919 | |
dc.description.abstract | Despite the global biodiversity of terrestrial gastropods and their ecological and economic importance, the genomic basis of ecological adaptation and speciation in land snail taxa is still largely unknown. Here, we combined whole-genome re-sequencing with population genomics to evaluate the historical demography and the speciation process of two closely related species of land snails from western Europe, Candidula unifasciata and C. rugosiuscula. Historical demographic analysis indicated fluctuations in the size of ancestral populations, probably driven by Pleistocene climatic fluctuations. Although the current population distributions of both species do not overlap, our approximate Bayesian computation model selection approach on several speciation scenarios suggested that gene flow has occurred throughout the divergence process until recently. Positively selected genes diverging early in the process were associated with intragenomic and cyto-nuclear incompatibilities, respectively, potentially fostering reproductive isolation as well as ecological divergence. Our results suggested that the speciation between species entails complex processes involving both gene flow and ecological speciation, and that further research based on whole-genome data can provide valuable understanding on species divergence. This article is part of the Theo Murphy meeting issue 'Molluscan genomics: broad insights and future directions for a neglected phylum | es_ES |
dc.description.sponsorship | This work was funded by LOEWE-Centre for Translational Biodiversity Genomics (LOEWE-TBG). L.J.C. was funded by a Post-doctoral Fellowship awarded by the Department of Education, Universities and Research of the Basque Government (Ref.: POS-2018-1-0012) | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | The Royal Society | es_ES |
dc.rights | info:eu-repo/semantics/openAccess | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by/3.0/es/ | * |
dc.subject | Gastropoda | es_ES |
dc.subject | approximate Bayesian computation | es_ES |
dc.subject | demographic history | es_ES |
dc.subject | ecological speciation | es_ES |
dc.subject | gene flow | es_ES |
dc.subject | whole-genome re-sequencing | es_ES |
dc.title | Whole-Genome Re-Sequencing Data to Infer Historical Demography and Speciation Processes in Land Snails: the Study of Two Candidula Sister Species | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.rights.holder | Published by the Royal Society under the terms of the Creative Commons Attribution License (CC BY 4.0) | es_ES |
dc.rights.holder | Atribución 3.0 España | * |
dc.relation.publisherversion | https://pubmed.ncbi.nlm.nih.gov/33813898/ | es_ES |
dc.identifier.doi | 10.1098/rstb.2020.0156 | |
dc.departamentoes | Zoología y biología celular animal | es_ES |
dc.departamentoeu | Zoologia eta animalia zelulen biologia | es_ES |