dc.contributor.author | Mahecic, Dora | |
dc.contributor.author | Carlini, Lina | |
dc.contributor.author | Kleele, Tatjana | |
dc.contributor.author | Colom Diego, Adai | |
dc.contributor.author | Goujon, Antoine | |
dc.contributor.author | Matile, Stefan | |
dc.contributor.author | Roux, Aurelien | |
dc.contributor.author | Manley, Suliana | |
dc.date.accessioned | 2021-05-19T08:17:22Z | |
dc.date.available | 2021-05-19T08:17:22Z | |
dc.date.issued | 2021-04-13 | |
dc.identifier.citation | Cell Reports 35(2) : (2021) // Article ID 108947 | es_ES |
dc.identifier.issn | 2211-1247 | |
dc.identifier.uri | http://hdl.handle.net/10810/51484 | |
dc.description.abstract | During mitochondrial fission, key molecular and cellular factors assemble on the outer mitochondrial membrane, where they coordinate to generate constriction. Constriction sites can eventually divide or reverse upon disassembly of the machinery. However, a role for membrane tension in mitochondrial fission, although speculated, has remained undefined. We capture the dynamics of constricting mitochondria in mammalian cells using live-cell structured illumination microscopy (SIM). By analyzing the diameters of tubules that emerge from mitochondria and implementing a fluorescence lifetime-based mitochondrial membrane tension sensor, we discover that mitochondria are indeed under tension. Under perturbations that reduce mitochondrial tension, constrictions initiate at the same rate, but are less likely to divide. We propose a model based on our estimates of mitochondrial membrane tension and bending energy in living cells which accounts for the observed probability distribution for mitochondrial constrictions to divide. | es_ES |
dc.description.sponsorship | This work was supported in part by the National Centre of Competence in Research Chemical Biology (S. Manley, S. Matile, and A.R.). S. Manley also acknowledges SNSF Project Grant 31003A_182429 (to T.K. and D.M). T.K. received funding from the European Molecular Biology Organization (ALTF-739-2016) and the Munich Cluster for Systems Neurology (SyNergy). A.C. received funding from MCIU, MINECO G19/P66, RYC-18/02, and T1270-19 | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Elsevier | es_ES |
dc.rights | info:eu-repo/semantics/openAccess | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by/3.0/es/ | * |
dc.subject | fluorescence lifetime | es_ES |
dc.subject | fluorescent tension sensor | es_ES |
dc.subject | membrane tension | es_ES |
dc.subject | microtubules | es_ES |
dc.subject | mitochondrial division | es_ES |
dc.subject | mitochondrial dynamics | es_ES |
dc.subject | super-resolution microscopy | es_ES |
dc.title | Mitochondrial Membrane Tension Governs Fission | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.rights.holder | This is an open access article distributed under the terms of the Creative Commons CC-BY license | es_ES |
dc.rights.holder | Atribución 3.0 España | * |
dc.relation.publisherversion | https://www.sciencedirect.com/science/article/pii/S2211124721002618?via%3Dihub | es_ES |
dc.identifier.doi | 10.1016/j.celrep.2021.108947 | |
dc.departamentoes | Bioquímica y biología molecular | es_ES |
dc.departamentoeu | Biokimika eta biologia molekularra | es_ES |