Effect of Deterpenated Origanum majorana L. Essential Oil on the Physicochemical and Biological Properties of Chitosan/β-Chitin Nanofibers Nanocomposite Films
View/ Open
Date
2021-05-07Author
Fernández Marín, Rut
Mujtaba, Muhammad
Cansaran-Duman, Demet
Ben Salha, Ghada
Labidi Bouchrika, Jalel
Fernandes, Susana C. M.
Metadata
Show full item record
Polymers 13(9) : (2021) // Article ID 1507
Abstract
Herein, the effect of three deterpenated fractions from Origanum majorana L. essential oil on the physicochemical, mechanical and biological properties of chitosan/β-chitin nanofibers-based nanocomposite films were investigated. In general, the incorporation of Origanum majorana L. original essential oil or its deterpenated fractions increases the opacity of the nanocomposite films and gives them a yellowish color. The water solubility decreases from 58% for chitosan/β-chitin nanofibers nanocomposite film to around 32% for the nanocomposite films modified with original essential oil or its deterpenated fractions. Regarding the thermal stability, no major changes were observed, and the mechanical properties decreased. Interestingly, data show differences on the biological properties of the materials depending on the incorporated deterpenated fraction of Origanum majorana L. essential oil. The nanocomposite films prepared with the deterpenated fractions with a high concentration of oxygenated terpene derivatives show the best antifungal activity against Aspergillus niger, with fungal growth inhibition of around 85.90%. Nonetheless, the only nanocomposite film that does not present cytotoxicity on the viability of L929 fibroblast cells after 48 and 72 h is the one prepared with the fraction presenting the higher terpenic hydrocarbon content (87.92%). These results suggest that the composition of the deterpenated fraction plays an important role in determining the biological properties of the nanocomposite films.
Collections
Except where otherwise noted, this item's license is described as 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).