Show simple item record

dc.contributor.authorBlanco Rey, María ORCID
dc.contributor.authorPerna, Paolo
dc.contributor.authorGudín, Adrián
dc.contributor.authorDíez, José Manuel
dc.contributor.authorAnadón, Alberto
dc.contributor.authorOlleros Rodríguez, Pablo
dc.contributor.authorDe Melo Costa, Leticia
dc.contributor.authorValvidares, Manuel
dc.contributor.authorGargiani, Pierluigi
dc.contributor.authorGuedeja Marrón, Alejandra
dc.contributor.authorCabero, Mariona
dc.contributor.authorVarela, María
dc.contributor.authorGarcía Fernández, Carlos
dc.contributor.authorOtrokov, Mikhail M.
dc.contributor.authorCamarero, Julio
dc.contributor.authorMiranda, Rodolfo
dc.contributor.authorArnau Pino, Andrés ORCID
dc.contributor.authorCerdá, Jorge I.
dc.date.accessioned2021-07-19T11:02:44Z
dc.date.available2021-07-19T11:02:44Z
dc.date.issued2021-05-28
dc.identifier.citationACS Applied Nano Materials 4(5) : 4398-4408 (2021)es_ES
dc.identifier.issn2574-0970
dc.identifier.urihttp://hdl.handle.net/10810/52507
dc.description.abstractNanometer-thick epitaxial Co films intercalated between graphene (Gr) and a heavy metal (HM) substrate are promising systems for the development of spin-orbitronic devices due to their large perpendicular magnetic anisotropy (PMA). A combination of theoretical modeling and experiments reveals the origin of the PMA and explains its behavior as a function of the Co thickness. High quality epitaxial Gr/Co-n/HM(111) (HM = Pt,Ir) heterostructures are grown by intercalation below graphene, which acts as a surfactant that kinetically stabilizes the pseudomorphic growth of highly perfect Co face-centered tetragonal (fct) films, with a reduced number of stacking faults as the only structural defect observable by high-resolution scanning transmission electron microscopy (STEM). Magneto-optic Kerr effect (MOKE) measurements show that such heterostructures present PMA up to large Co critical thicknesses of about 4 nm (20 ML) and 2 nm (10 ML) for Pt and Ir substrates, respectively. X-ray magnetic circular dichroism (XMCD) measurements show an inverse power law of the anisotropy of the orbital moment with Co thickness, reflecting its interfacial nature, that changes sign at about the same critical values. First principles calculations show that, regardless of the presence of graphene, ideal Co fct films on HM buffers do not sustain PMAs beyond around 6 mLs due to the in-plane contribution of the inner bulk-like Co layers. The large experimental critical thicknesses sustaining PMA can only be retrieved by the inclusion of structural defects that promote a local hcp stacking such as twin boundaries or stacking faults. Remarkably, a layer resolved analysis of the orbital momentum anisotropy reproduces its interfacial nature, and reveals that the Gr/Co interface contribution is comparable to that of the Co/Pt(Ir).es_ES
dc.description.sponsorshipFinancial support from MINECO (Grant Nos. RTI2018-097895-B-C41, RTI2018-097895-BC42 and RTI2018-097895-B-C43 (FUN-SOC), PID2019- 103910GB-I00, FIS2016-78591-C3-1-R and FIS2016-78591- C3-2-R (SKYTRON), PGC2018-098613-B-C21 (SpOrQuMat), PCI2019-111908-2 and PCI2019-111867-2 (FLAGERA 3 grant SOgraphMEM)], from Regional Government of Madrid (grant number P2018/NMT-4321 (NANOMAGCOST-CM)) and from Gobierno Vasco-UPV/EHU (grant numbers GIU18/138 and IT-1246-19). We acknowledge experiments at ALBA BL29 via proposal no. 2019023333. IMDEA-Nanociencia acknowledges support from the “Severo Ochoa” Program for Centres of Excellence in R&D (MINECO, Grant SEV-2016-0686)es_ES
dc.language.isoenges_ES
dc.publisherAmerican Chemical Societyes_ES
dc.relationinfo:eu-repo/grantAgreement/MINECO/RTI2018-097895-B-C41es_ES
dc.relationinfo:eu-repo/grantAgreement/MINECO/RTI2018-097895-BC42es_ES
dc.relationinfo:eu-repo/grantAgreement/MINECO/RTI2018-097895-B-C43es_ES
dc.relationinfo:eu-repo/grantAgreement/MICINN/PID2019-103910GB-I00es_ES
dc.relationinfo:eu-repo/grantAgreement/MICINN/FIS2016-78591-C3-1-Res_ES
dc.relationinfo:eu-repo/grantAgreement/MICINN/FIS2016-78591C3-2-Res_ES
dc.relationinfo:eu-repo/grantAgreement/MICINN/PGC2018-098613-B-C21es_ES
dc.relationinfo:eu-repo/grantAgreement/MICINN/PCI2019-111908-2es_ES
dc.relationinfo:eu-repo/grantAgreement/MICINN/PCI2019-111867-2es_ES
dc.relationinfo:eu-repo/grantAgreement/MINECO/SEV-2016-0686es_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subjectmagnetic multilayerses_ES
dc.subjectperpendicular magnetic anisotropyes_ES
dc.subjectspin-orbit couplinges_ES
dc.subjectMOKEes_ES
dc.subjectXMCDes_ES
dc.subjectDFTes_ES
dc.subjectplane-wave methodes_ES
dc.subjectmagnetocrystalline anisotropyes_ES
dc.subjectcircular-dichroismes_ES
dc.subjectmicroscopic origines_ES
dc.subjectstacking-faultses_ES
dc.subjectcobaltes_ES
dc.subjectenergyes_ES
dc.subjectfilmses_ES
dc.subjectsurfaceses_ES
dc.subjectgrowthes_ES
dc.titleLarge Perpendicular Magnetic Anisotropy in Nanometer-Thick Epitaxial Graphene/Co/Heavy Metal Heterostructures for Spin-Orbitronics Deviceses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.holderThis is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY-NC-ND 4.0)es_ES
dc.rights.holderAtribución-NoComercial-SinDerivadas 3.0 España*
dc.relation.publisherversionhttps://pubs-acs-org.ehu.idm.oclc.org/doi/10.1021/acsanm.0c03364#es_ES
dc.identifier.doi10.1021/acsanm.0c03364
dc.departamentoesPolímeros y Materiales Avanzados: Física, Química y Tecnologíaes_ES
dc.departamentoeuPolimero eta Material Aurreratuak: Fisika, Kimika eta Teknologiaes_ES


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY-NC-ND 4.0)
Except where otherwise noted, this item's license is described as This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY-NC-ND 4.0)