Itemaren erregistro erraza erakusten du

dc.contributor.authorSaiz, Fátima A.
dc.contributor.authorAlfaro, Garazi
dc.contributor.authorBarandiaran, Iñigo
dc.contributor.authorGraña Romay, Manuel María
dc.date.accessioned2021-08-03T12:17:42Z
dc.date.available2021-08-03T12:17:42Z
dc.date.issued2021-07-09
dc.identifier.citationApplied Sciences 11(14) : (2021) // Article ID 6368es_ES
dc.identifier.issn2076-3417
dc.identifier.urihttp://hdl.handle.net/10810/52643
dc.description.abstractThis paper describes the application of Semantic Networks for the detection of defects in images of metallic manufactured components in a situation where the number of available samples of defects is small, which is rather common in real practical environments. In order to overcome this shortage of data, the common approach is to use conventional data augmentation techniques. We resort to Generative Adversarial Networks (GANs) that have shown the capability to generate highly convincing samples of a specific class as a result of a game between a discriminator and a generator module. Here, we apply the GANs to generate samples of images of metallic manufactured components with specific defects, in order to improve training of Semantic Networks (specifically DeepLabV3+ and Pyramid Attention Network (PAN) networks) carrying out the defect detection and segmentation. Our process carries out the generation of defect images using the StyleGAN2 with the DiffAugment method, followed by a conventional data augmentation over the entire enriched dataset, achieving a large balanced dataset that allows robust training of the Semantic Network. We demonstrate the approach on a private dataset generated for an industrial client, where images are captured by an ad-hoc photometric-stereo image acquisition system, and a public dataset, the Northeastern University surface defect database (NEU). The proposed approach achieves an improvement of 7% and 6% in an intersection over union (IoU) measure of detection performance on each dataset over the conventional data augmentation.es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/
dc.subjectdefect segmentationes_ES
dc.subjectdata augmentationes_ES
dc.subjectgenerative adversarial networkses_ES
dc.subjectindustrial manufacturinges_ES
dc.subjectquality inspectiones_ES
dc.subjectphotometric stereoes_ES
dc.titleGenerative Adversarial Networks to Improve the Robustness of Visual Defect Segmentation by Semantic Networks in Manufacturing Componentses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.date.updated2021-07-23T13:28:25Z
dc.rights.holder© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).es_ES
dc.relation.publisherversionhttps://www.mdpi.com/2076-3417/11/14/6368es_ES
dc.identifier.doi10.3390/app11146368
dc.departamentoesCiencia de la computación e inteligencia artificial
dc.departamentoeuKonputazio zientziak eta adimen artifiziala


Item honetako fitxategiak

Thumbnail

Item hau honako bilduma honetan/hauetan agertzen da

Itemaren erregistro erraza erakusten du

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Bestelakorik adierazi ezean, itemaren baimena horrela deskribatzen da:© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).