dc.contributor.author | Elordi Hidalgo, Unai | |
dc.contributor.author | Unzueta Irurtia, Luis | |
dc.contributor.author | Goenetxea Imaz, Jon | |
dc.contributor.author | Loyo Mendivil, Estíbaliz | |
dc.contributor.author | Arganda Carreras, Ignacio | |
dc.contributor.author | Otaegui Madurga, Oihana | |
dc.date.accessioned | 2021-09-02T10:08:08Z | |
dc.date.available | 2021-09-02T10:08:08Z | |
dc.date.issued | 2021 | |
dc.identifier.citation | Proceedings of the 16th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2021) 4 : 717-723 (2021) | es_ES |
dc.identifier.isbn | 978-989-758-488-6 | |
dc.identifier.issn | 2184-4321 | |
dc.identifier.uri | http://hdl.handle.net/10810/52897 | |
dc.description.abstract | [EN] We present an approach to optimally deploy Deep Neural Networks (DNNs) in serverless cloud architectures.
A serverless architecture allows running code in response to events, automatically managing the required
computing resources. However, these resources have limitations in terms of execution environment (CPU
only), cold starts, space, scalability, etc. These limitations hinder the deployment of DNNs, especially
considering that fees are charged according to the employed resources and the computation time. Our
deployment approach is comprised of multiple decoupled software layers that allow effectively managing
multiple processes, such as business logic, data access, and computer vision algorithms that leverage DNN
optimization techniques. Experimental results in AWS Lambda reveal its potential to build cost-effective ondemand
serverless video surveillance systems. | es_ES |
dc.description.sponsorship | This work has been partially supported by the program ELKARTEK 2019 of the Basque Government under project AUTOLIB. | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | SciTePress, Science and Technology Publications, Lda | es_ES |
dc.rights | info:eu-repo/semantics/openAccess | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/es/ | * |
dc.subject | video surveillance | es_ES |
dc.subject | serverless computing | es_ES |
dc.subject | deep neural networks optimizations | es_ES |
dc.title | On-demand serverless video surveillance with optimal deployment of deep neural networks | es_ES |
dc.type | info:eu-repo/semantics/conferenceObject | es_ES |
dc.rights.holder | ©2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved. https://creativecommons.org/licenses/by-nc-nd/4.0/ CC BY-NC-ND 4.0 | es_ES |
dc.rights.holder | Atribución-NoComercial-SinDerivadas 3.0 España | * |
dc.relation.publisherversion | https://www.scitepress.org/PublicationsDetail.aspx?ID=VfC9LW2Emuk=&t=1 | es_ES |
dc.identifier.doi | 10.5220/0010344807170723 | |
dc.departamentoes | Ciencia de la computación e inteligencia artificial | es_ES |
dc.departamentoes | Lenguajes y sistemas informáticos | es_ES |
dc.departamentoeu | Hizkuntza eta sistema informatikoak | es_ES |
dc.departamentoeu | Konputazio zientziak eta adimen artifiziala | es_ES |