Show simple item record

dc.contributor.authorElordi Hidalgo, Unai
dc.contributor.authorUnzueta Irurtia, Luis
dc.contributor.authorGoenetxea Imaz, Jon
dc.contributor.authorLoyo Mendivil, Estíbaliz
dc.contributor.authorArganda Carreras, Ignacio
dc.contributor.authorOtaegui Madurga, Oihana
dc.date.accessioned2021-09-02T10:08:08Z
dc.date.available2021-09-02T10:08:08Z
dc.date.issued2021
dc.identifier.citationProceedings of the 16th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2021) 4 : 717-723 (2021)es_ES
dc.identifier.isbn978-989-758-488-6
dc.identifier.issn2184-4321
dc.identifier.urihttp://hdl.handle.net/10810/52897
dc.description.abstract[EN] We present an approach to optimally deploy Deep Neural Networks (DNNs) in serverless cloud architectures. A serverless architecture allows running code in response to events, automatically managing the required computing resources. However, these resources have limitations in terms of execution environment (CPU only), cold starts, space, scalability, etc. These limitations hinder the deployment of DNNs, especially considering that fees are charged according to the employed resources and the computation time. Our deployment approach is comprised of multiple decoupled software layers that allow effectively managing multiple processes, such as business logic, data access, and computer vision algorithms that leverage DNN optimization techniques. Experimental results in AWS Lambda reveal its potential to build cost-effective ondemand serverless video surveillance systems.es_ES
dc.description.sponsorshipThis work has been partially supported by the program ELKARTEK 2019 of the Basque Government under project AUTOLIB.es_ES
dc.language.isoenges_ES
dc.publisherSciTePress, Science and Technology Publications, Ldaes_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subjectvideo surveillancees_ES
dc.subjectserverless computinges_ES
dc.subjectdeep neural networks optimizationses_ES
dc.titleOn-demand serverless video surveillance with optimal deployment of deep neural networkses_ES
dc.typeinfo:eu-repo/semantics/conferenceObjectes_ES
dc.rights.holder©2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved. https://creativecommons.org/licenses/by-nc-nd/4.0/ CC BY-NC-ND 4.0es_ES
dc.rights.holderAtribución-NoComercial-SinDerivadas 3.0 España*
dc.relation.publisherversionhttps://www.scitepress.org/PublicationsDetail.aspx?ID=VfC9LW2Emuk=&t=1es_ES
dc.identifier.doi10.5220/0010344807170723
dc.departamentoesCiencia de la computación e inteligencia artificiales_ES
dc.departamentoesLenguajes y sistemas informáticoses_ES
dc.departamentoeuHizkuntza eta sistema informatikoakes_ES
dc.departamentoeuKonputazio zientziak eta adimen artifizialaes_ES


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

©2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved. https://creativecommons.org/licenses/by-nc-nd/4.0/ CC BY-NC-ND 4.0
Except where otherwise noted, this item's license is described as ©2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved. https://creativecommons.org/licenses/by-nc-nd/4.0/ CC BY-NC-ND 4.0