Show simple item record

dc.contributor.authorSerrano Jiménez, Alfredo
dc.contributor.authorSánchez Muzas, Alberto Pablo
dc.contributor.authorZhang, Yaolong
dc.contributor.authorOvcar, Juraj
dc.contributor.authorJiang, Bin
dc.contributor.authorLoncaric, Ivor
dc.contributor.authorJuaristi Oliden, Joseba Iñaki
dc.contributor.authorAlducín Ochoa, Maite
dc.date.accessioned2021-09-02T10:16:51Z
dc.date.available2021-09-02T10:16:51Z
dc.date.issued2021-07-19
dc.identifier.citationJournal of Chemical Theory and Computation 17 : 4648-4659 (2021)es_ES
dc.identifier.issn1549-9618
dc.identifier.issn1549-9626
dc.identifier.urihttp://hdl.handle.net/10810/52906
dc.description.abstract[EN] Modeling the ultrafast photoinduced dynamics and reactivity of adsorbates on metals requires including the effect of the laser-excited electrons and, in many cases, also the effect of the highly excited surface lattice. Although the recent ab initio molecular dynamics with electronic friction and thermostats, (Te,Tl)-AIMDEF [Alducin, M.;et al. Phys. Rev. Lett. 2019, 123, 246802], enables such complex modeling, its computational cost may limit its applicability. Here, we use the new embedded atom neural network (EANN) method [Zhang, Y.;et al. J. Phys. Chem. Lett. 2019, 10, 4962] to develop an accurate and extremely complex potential energy surface (PES) that allows us a detailed and reliable description of the photoinduced desorption of CO from the Pd(111) surface with a coverage of 0.75 monolayer. Molecular dynamics simulations performed on this EANN-PES reproduce the (Te,Tl)-AIMDEF results with a remarkable level of accuracy. This demonstrates the outstanding performance of the obtained EANN-PES that is able to reproduce available density functional theory (DFT) data for an extensive range of surface temperatures (90-1000 K); a large number of degrees of freedom, those corresponding to six CO adsorbates and 24 moving surface atoms; and the varying CO coverage caused by the abundant desorption events.es_ES
dc.description.sponsorshipThe authors acknowledge financial support by the Gobierno Vasco-UPV/EHU Project no. IT1246-19 and the Spanish Ministerio de Ciencia e Innovación [Grant no. PID2019- 107396GB-I00/AEI/10.13039/501100011033]. This work has been supported in part by the Croatian Science Foundation under project UIP-2020-02-5675. This research was conducted in the scope of the Transnational Common Laboratory (LTC) “QuantumChemPhys?Theoretical Chemistry and Physics at the Quantum Scale”. Computational resources were provided by the DIPC computing center.es_ES
dc.language.isoenges_ES
dc.publisherAmerican Chemical Societyes_ES
dc.relationinfo:eu-repo/grantAgreement/MINECO/PID2019-107396GB-I00/AEI/10.13039/501100011033es_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.titlePhotoinduced desorption dynamics of CO from Pd(111): a neural network approaches_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.holder©2021 The Authors. Published by American Chemical Society. Attribution 4.0 International (CC BY 4.0)es_ES
dc.rights.holderAtribución 3.0 España*
dc.relation.publisherversionhttps://pubs.acs.org/doi/10.1021/acs.jctc.1c00347es_ES
dc.identifier.doi10.1021/acs.jctc.1c00347
dc.departamentoesPolímeros y Materiales Avanzados: Física, Química y Tecnologíaes_ES
dc.departamentoeuPolimero eta Material Aurreratuak: Fisika, Kimika eta Teknologiaes_ES


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

©2021 The Authors. Published by American Chemical Society. Attribution 4.0 International (CC BY 4.0)
Except where otherwise noted, this item's license is described as ©2021 The Authors. Published by American Chemical Society. Attribution 4.0 International (CC BY 4.0)