On the Properties of a Class of Impulsive Competition Beverton–Holt Equations
dc.contributor.author | De la Sen Parte, Manuel | |
dc.contributor.author | Ibeas Hernández, Asier | |
dc.contributor.author | Alonso Quesada, Santiago | |
dc.contributor.author | Garrido Hernández, Aitor Josu | |
dc.contributor.author | Garrido Hernández, Izaskun | |
dc.date.accessioned | 2021-10-19T08:47:27Z | |
dc.date.available | 2021-10-19T08:47:27Z | |
dc.date.issued | 2021-09-28 | |
dc.identifier.citation | Applied Sciences 11(19) : (2021) // Article ID 9020 | es_ES |
dc.identifier.issn | 2076-3417 | |
dc.identifier.uri | http://hdl.handle.net/10810/53468 | |
dc.description.abstract | This paper is devoted to a type of combined impulsive discrete Beverton–Holt equations in ecology when eventual discontinuities at sampling time instants are considered. Such discontinuities could be interpreted as impulses in the corresponding continuous-time logistic equations. The set of equations involve competition-type coupled dynamics among a finite set of species. It is assumed that, in general, the intrinsic growth rates and the carrying capacities are eventually distinct for the various species. The impulsive parts of the equations are parameterized by harvesting quotas and independent consumptions which are also eventually distinct for the various species and which control the populations’ evolution. The performed study includes the existence of extinction and non-extinction equilibrium points, the conditions of non-negativity and boundedness of the solutions for given finite non-negative initial conditions and the conditions of asymptotic stability without or with extinction of the solutions. | es_ES |
dc.description.sponsorship | This research was supported by the Spanish Government through grant RTI2018-094336-B-100 (MCIU/AEI/FEDER, UE) and by the Basque Government through grant IT1207-19. | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | MDPI | es_ES |
dc.relation | info:eu-repo/grantAgreement/MCIU/RTI2018-094336-B-100 | es_ES |
dc.rights | info:eu-repo/semantics/openAccess | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by/3.0/es/ | |
dc.subject | difference equations | es_ES |
dc.subject | discrete Beverton–Holt equation | es_ES |
dc.subject | impulsive equation | es_ES |
dc.subject | competition Beverton–Holt equations | es_ES |
dc.subject | equilibrium points | es_ES |
dc.subject | non-negativity | es_ES |
dc.subject | boundedness | es_ES |
dc.title | On the Properties of a Class of Impulsive Competition Beverton–Holt Equations | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.date.updated | 2021-10-12T14:17:53Z | |
dc.rights.holder | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). | es_ES |
dc.relation.publisherversion | https://www.mdpi.com/2076-3417/11/19/9020/htm | es_ES |
dc.identifier.doi | 10.3390/app11199020 | |
dc.departamentoes | Electricidad y electrónica | |
dc.departamentoes | Ingeniería de sistemas y automática | |
dc.departamentoeu | Elektrizitatea eta elektronika | |
dc.departamentoeu | Sistemen ingeniaritza eta automatika |
Files in this item
This item appears in the following Collection(s)
Except where otherwise noted, this item's license is described as 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).