Show simple item record

dc.contributor.authorLatini, Simone
dc.contributor.authorShin, Dongbin
dc.contributor.authorSato, Shunsuke A.
dc.contributor.authorSchäfer, Christian
dc.contributor.authorDe Giovannini, Umberto
dc.contributor.authorHübener, Hannes
dc.contributor.authorRubio Secades, Angel
dc.date.accessioned2021-10-20T10:55:06Z
dc.date.available2021-10-20T10:55:06Z
dc.date.issued2021-08-03
dc.identifier.citationProceedings of the National Academy of Sciences of the United States of America 118(31) : (2021) Article ID e2105618118es_ES
dc.identifier.issn0027-8424
dc.identifier.urihttp://hdl.handle.net/10810/53496
dc.description.abstractOptical cavities confine light on a small region in space, which can result in a strong coupling of light with materials inside the cavity. This gives rise to new states where quantum fluctuations of light and matter can alter the properties of the material altogether. Here we demonstrate, based on first-principles calculations, that such light-matter coupling induces a change of the collective phase from quantum paraelectric to ferroelectric in the SrTiO3 ground state, which has thus far only been achieved in outof-equilibrium strongly excited conditions [X. Li et al., Science 364, 1079-1082 (2019) and T. F. Nova, A. S. Disa, M. Fechner, A. Cavalleri, Science 364, 1075-1079 (2019)]. This is a light-matter hybrid ground state which can only exist because of the coupling to the vacuum fluctuations of light, a photo ground state. The phase transition is accompanied by changes in the crystal structure, showing that fundamental ground state properties of materials can be controlled via strong light-matter coupling. Such a control of quantum states enables the tailoring of materials properties or even the design of novel materials purely by exposing them to confined light.es_ES
dc.description.sponsorshipWe are grateful for the illuminating discussions with Dmitri Basov, Atac Imamoglu, Jerome Faist, Jean-Marc Triscone, Peter Littlewood, Andrew Millis, Michael Ruggenthaler, Michael A. Sentef, and Eugene Demler. We acknowledge financial support from the European Research Council (Grant ERC2015AdG694097) , Grupos Consolidados (Grant IT124919) , the Japan Society for the Promotion of Science KAKENHI program (Grant JP20K14382) , and the Cluster of Excellence "CUI: Advanced Imag-ing of Matter" of the Deutsche Forschungsgemeinschaft (Grant EXC 2056 Project 390715994) . The Flatiron Institute is a division of the Simons Foundation. S.L. and D.S. acknowledge support from the Alexander von Humboldt Foundation.es_ES
dc.language.isoenges_ES
dc.publisherNational Academy of Scienceses_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.subjectcavity materials engineeringes_ES
dc.subjectquantum paraelectric to ferroelectric transitionses_ES
dc.subjecttrong light-matter hybridses_ES
dc.subjectpolaritonses_ES
dc.subjectSrTiO3es_ES
dc.subjectcavity phase diagrames_ES
dc.subjectstructural phase-transitionses_ES
dc.subjectquantumes_ES
dc.titleThe ferroelectric photo ground state of SrTiO3: Cavity materials engineeringes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.holderThis open access article is distributed under Creative Commons Attribution License 4.0 (CC BY).yes_ES
dc.rights.holderAtribución 3.0 España*
dc.relation.publisherversionhttps://www.pnas.org/content/118/31/e2105618118es_ES
dc.identifier.doi10.1073/pnas.2105618118
dc.departamentoesFísica de materialeses_ES
dc.departamentoeuMaterialen fisikaes_ES


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

This open access article is distributed under Creative Commons Attribution License 4.0
(CC BY).y
Except where otherwise noted, this item's license is described as This open access article is distributed under Creative Commons Attribution License 4.0 (CC BY).y