Show simple item record

dc.contributor.authorOtxoa, Ruben M.
dc.contributor.authorRama Eiroa, Ricardo
dc.contributor.authorRoy, P. E.
dc.contributor.authorTatara, G.
dc.contributor.authorChubykalo-Fesenko, O.
dc.contributor.authorAtxitia Macizo, Unai
dc.date.accessioned2021-12-09T09:20:43Z
dc.date.available2021-12-09T09:20:43Z
dc.date.issued2021-10-25
dc.identifier.citationPhysical Review Research 3(4) : (2021) // Article ID 043069es_ES
dc.identifier.issn2643-1564
dc.identifier.urihttp://hdl.handle.net/10810/54396
dc.description.abstract[EN]Magnetic solitons offer functionalities as information carriers in multiple spintronic and magnonic applications. However, their potential for nanoscale energy transport has not been revealed. Here we demonstrate that antiferromagnetic solitons, e.g., domain walls, can uptake, transport, and release energy. The key for this functionality resides in their relativistic kinematics; their self-energy increases with velocity due to Lorentz contraction of the soliton and their dynamics can be accelerated up to the effective speed of light of the magnetic medium. Furthermore, their classification in robust topological classes allows us to selectively release this energy back into the medium by colliding solitons with opposite topology. Our work uncovers important energy-related aspects of the physics of antiferromagnetic solitons and opens up the attractive possibility for spin-based nanoscale and ultrafast energy transport devices.es_ES
dc.description.sponsorshipThe work of R.M.O. was partially supported by the STSM Grants from the COST Action CA17123 Ultrafast opto-magneto-electronics for nondissipative information technology. R.M.O. would like to thank Andrew Ramsey for useful discussions. U.A. and R.R.-E. acknowledge support from the Deutsche Forschungsgemeinschaft through SFB/TRR 227 "Ultrafast Spin Dynamics," Project A08. G.T. acknowledges the Grant-in-Aid for Scientific Research (B) (No. 17H02929) from the Japan Society for the Promotion of Science. O.C-F. acknowledges the financial support from Spanish Ministry of Science and Innovation under Grant No. PID2019-108075RB-C31I00/AEI/10.13039/501100011033.es_ES
dc.language.isoenges_ES
dc.publisherAmerican Physical Societyes_ES
dc.relationinfo:eu-repo/grantAgreement/MICIU/PID2019-108075RB-C31I00es_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.subjectspintronicses_ES
dc.subjectdrivenes_ES
dc.subjectmotiones_ES
dc.titleTopologically-mediated energy release by relativistic antiferromagnetic solitonses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.holderPublished by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.es_ES
dc.rights.holderAtribución 3.0 España*
dc.relation.publisherversionhttps://journals-aps-org.ehu.idm.oclc.org/prresearch/abstract/10.1103/PhysRevResearch.3.043069es_ES
dc.identifier.doi10.1103/PhysRevResearch.3.043069
dc.departamentoesPolímeros y Materiales Avanzados: Física, Química y Tecnologíaes_ES
dc.departamentoeuPolimero eta Material Aurreratuak: Fisika, Kimika eta Teknologiaes_ES


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.
Except where otherwise noted, this item's license is described as Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.