Show simple item record

dc.contributor.authorCabezas Olivenza, Mireya
dc.contributor.authorZulueta Guerrero, Ekaitz
dc.contributor.authorSánchez Chica, Ander
dc.contributor.authorTeso Fernández de Betoño, Adrián ORCID
dc.contributor.authorFernández Gámiz, Unai
dc.date.accessioned2021-12-10T12:11:46Z
dc.date.available2021-12-10T12:11:46Z
dc.date.issued2021-12-02
dc.identifier.citationMathematics 9(23) : (2021) // Article ID 3139es_ES
dc.identifier.issn2227-7390
dc.identifier.urihttp://hdl.handle.net/10810/54417
dc.description.abstractThere is presently a need for more robust navigation algorithms for autonomous industrial vehicles. These have reasonably guaranteed the adequate reliability of the navigation. In the current work, the stability of a modified algorithm for collision-free guiding of this type of vehicle is ensured. A lateral control and a longitudinal control are implemented. To demonstrate their viability, a stability analysis employing the Lyapunov method is carried out. In addition, this mathematical analysis enables the constants of the designed algorithm to be determined. In conjunction with the navigation algorithm, the present work satisfactorily solves the localization problem, also known as simultaneous localization and mapping (SLAM). Simultaneously, a convolutional neural network is managed, which is used to calculate the trajectory to be followed by the AGV, by implementing the artificial vision. The use of neural networks for image processing is considered to constitute the most robust and flexible method for realising a navigation algorithm. In this way, the autonomous vehicle is provided with considerable autonomy. It can be regarded that the designed algorithm is adequate, being able to trace any type of path.es_ES
dc.description.sponsorshipThe current study has been sponsored by the Government of the Basque Country-ELKARTEK21/10 KK-2021/00014 (“Estudio de nuevas técnicas de inteligencia artificial basadas en Deep Learning dirigidas a la optimización de procesos industriales”) research program.es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/
dc.subjectnavigationes_ES
dc.subjectlocalizationes_ES
dc.subjectSLAMes_ES
dc.subjectcomputer visiones_ES
dc.subjectneural networkes_ES
dc.subjectsemantic segmentationes_ES
dc.subjectLyapunoves_ES
dc.subjectAGVes_ES
dc.subjectpath planninges_ES
dc.subjectpath followinges_ES
dc.titleDynamical Analysis of a Navigation Algorithmes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.date.updated2021-12-09T14:32:21Z
dc.rights.holder2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).es_ES
dc.relation.publisherversionhttps://www.mdpi.com/2227-7390/9/23/3139/htmes_ES
dc.identifier.doi10.3390/math9233139
dc.departamentoesIngeniería de sistemas y automática
dc.departamentoesIngeniería nuclear y mecánica de fluidos
dc.departamentoeuSistemen ingeniaritza eta automatika
dc.departamentoeuIngeniaritza nuklearra eta jariakinen mekanika


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Except where otherwise noted, this item's license is described as 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).