Show simple item record

dc.contributor.authorTutar, Mustafa
dc.contributor.authorÜstün, Cihat Emre
dc.contributor.authorCampillo Robles, José Miguel ORCID
dc.contributor.authorFuente Dacal, Raquel
dc.contributor.authorCibrián Yangües, Silvia
dc.contributor.authorArzua, Ignacio
dc.contributor.authorFernández Goyenechea, Arturo
dc.contributor.authorLópez, Gabriel Alejandro ORCID
dc.date.accessioned2021-12-15T13:39:15Z
dc.date.available2021-12-15T13:39:15Z
dc.date.issued2021-12
dc.identifier.citationComputers & Chemical Engineering 155 : (2021) // Article ID 107504es_ES
dc.identifier.issn0098-1354
dc.identifier.issn1873-4375
dc.identifier.urihttp://hdl.handle.net/10810/54498
dc.description.abstract[EN]The present study proposes an optimized computational fluid dynamics (CFD) modelling framework to provide a complete and accurate representation of combustion and heat transfer phenomena in the radiation section of an industrial top-fired steam methane reforming (SMR) furnace containing 64 reforming tubes, 30 burners and 3 flue-gas tunnels. The framework combines fully-coupled appropriate furnace-side models with a 1-D reforming process-side model. Experimental measurements are conducted in terms of outlet temperatures at the flue-gas tunnels, point-wise temperature distributions at the panel walls, and inside the reforming tube collectors which are placed at the refinery plant of Petronor. The final results are compared with the experimental data for validation purpose. The proposed fully coupled 3-D CFD modeling framework, which utilizes a detailed chemical-kinetic combustion mechanism, reproduces well basic flow features including pre-mixed combustion process, downward movement of flue-gas in association with large recirculation zones, radiative heat transfer to the reforming tubes, composition profiles along the reaction core of the reforming tubes, temperature non-uniformities, and fluctuating characteristics of heat flux. The reported non-uniform heat and temperature distributions might be optimized by means of the operating parameters in order to avoid a negative impact on furnace balancing and performance.es_ES
dc.description.sponsorshipThis research is partially funded by Basque Industry 4.0 pro-gramme of Basque Government (BI00024/2019) and University-Company-Society 2019 call of UPV/EHU (US19/13) . Open access funding is provided by the University of the Basque Country (UPV/EHU) .es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subjectcombustiones_ES
dc.subjectreactores_ES
dc.subjecttemperaturees_ES
dc.subjectsimulationses_ES
dc.subjectoperationes_ES
dc.titleOptimized CFD modelling and validation of radiation section of an industrial top-fired steam methane reforming furnacees_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.holder©2021 The Authors. This is an open access article under the CC BY-NC-ND licensees_ES
dc.rights.holderAtribución-NoComercial-SinDerivadas 3.0 España*
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S0098135421002829?via%3Dihubes_ES
dc.identifier.doi10.1016/j.compchemeng.2021.107504
dc.departamentoesFísicaes_ES
dc.departamentoesMatemática aplicadaes_ES
dc.departamentoeuFisikaes_ES
dc.departamentoeuMatematika aplikatuaes_ES


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

©2021 The Authors. This is an open access article under the CC BY-NC-ND license
Except where otherwise noted, this item's license is described as ©2021 The Authors. This is an open access article under the CC BY-NC-ND license