Show simple item record

dc.contributor.authorMittal, Neeru
dc.contributor.authorOjanguren, Alazne
dc.contributor.authorCavasin, Nicola
dc.contributor.authorLizundia Fernández, Erlantz ORCID
dc.contributor.authorNiederberger, Markus
dc.date.accessioned2022-01-04T12:09:14Z
dc.date.available2022-01-04T12:09:14Z
dc.date.issued2021-08
dc.identifier.citationAdvanced Funtional Materials 31(33) : (2021) // Article ID 2101827es_ES
dc.identifier.issn1616-301X
dc.identifier.issn1616-3028
dc.identifier.urihttp://hdl.handle.net/10810/54821
dc.description.abstractTransient batteries play a pivotal role in the development of fully autonomous transient devices, which are designed to degrade after a period of stable operation. Here, a new transient separator-electrolyte pair is introduced for lithium ion batteries. Cellulose nanocrystals (CNCs) are selectively located onto the nanopores of polyvinyl alcohol membranes, providing mobile ions to interact with the liquid electrolyte. After lithiation of CNCs, membranes with electrolyte uptake of 510 wt%, ionic conductivities of 3.077 mS center dot cm(-1), electrochemical stability of 5.5 V versus Li/Li+, and high Li+ transport numbers are achieved. Using an organic electrolyte, the separators enable stable Li metal deposition with no dendrite growth, delivering 94 mAh center dot g(-1) in Li/LiFePO4 cells at 100 mA center dot g(-1) after 200 cycles. To make the separator-electrolyte pair transient and non-toxic, the organic electrolyte is replaced by a biocompatible ionic liquid. As a proof of concept, a fully transient Li/V2O5 cell is assembled, delivering 55 mAh center dot g(-1) after 200 cycles at 100 mA center dot g(-1). Thanks to the reversible Li plating/stripping, dendrite growth suppression, capacity retention, and degradability, these materials hold a bright future in the uptake of circular economy concepts applied to the energy storage field.es_ES
dc.description.sponsorshipThe authors gratefully acknowledge financial support from ETH Zurich (ETH Research Grant ETH-45 18-1). The authors thank Medicell Membranes Ltd. for kindly providing Visking dialysis membranes. The authors acknowledge support from the Scientific Center for Optical and Electron Microscopy (ScopeM) of ETH Zurich. The authors also thank Dr. Dipan Kundu for helpful discussions on transport number.es_ES
dc.language.isoenges_ES
dc.publisherWileyes_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc/3.0/es/*
dc.subjectcellulose nanocrystalses_ES
dc.subjectdegradationes_ES
dc.subjectionic liquidses_ES
dc.subjectlithium ion batterieses_ES
dc.subjectsustainabilityes_ES
dc.subjecttransiencyes_ES
dc.subjectaccesses_ES
dc.subjectconducting polymer electrolyteses_ES
dc.subjecttransference numberses_ES
dc.subjection batterieses_ES
dc.subjectmembraneses_ES
dc.subject1-butyl-3-methylimidazoliumes_ES
dc.subjecttemperaturees_ES
dc.subjectnanocrystalses_ES
dc.subjectstabilityes_ES
dc.subjecttoxicityes_ES
dc.subjectliquidses_ES
dc.titleTransient Rechargeable Battery with a High Lithium Transport Number Cellulosic Separatores_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.holder2021 The Authors. Advanced Functional Materials published by Wiley-VCH GmbH. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.es_ES
dc.rights.holderAtribución-NoComercial 3.0 España*
dc.relation.publisherversionhttps://onlinelibrary.wiley.com/doi/10.1002/adfm.202101827es_ES
dc.identifier.doi10.1002/adfm.202101827
dc.departamentoesExpresión grafica y proyectos de ingenieríaes_ES
dc.departamentoeuAdierazpen grafikoa eta ingeniaritzako proiektuakes_ES


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

2021 The Authors. Advanced Functional Materials published by Wiley-VCH GmbH. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
Except where otherwise noted, this item's license is described as 2021 The Authors. Advanced Functional Materials published by Wiley-VCH GmbH. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.