Show simple item record

dc.contributor.authorZhukova Zhukova, Valentina ORCID
dc.contributor.authorCorte León, Paula ORCID
dc.contributor.authorBlanco Aranguren, Juan María ORCID
dc.contributor.authorIpatov, Mihail
dc.contributor.authorGonzález Legarreta, Lorena
dc.contributor.authorGonzález Villegas, Alvaro
dc.contributor.authorZhukov Egorova, Arkady Pavlovich ORCID
dc.date.accessioned2022-01-21T09:43:20Z
dc.date.available2022-01-21T09:43:20Z
dc.date.issued2022-01-07
dc.identifier.citationChemosensors 10(1) : (2022) // Article ID 26es_ES
dc.identifier.issn2227-9040
dc.identifier.urihttp://hdl.handle.net/10810/55095
dc.description.abstractAmorphous magnetic microwires can be suitable for a variety of technological applications due to their excellent magnetic softness and giant magnetoimpedance (GMI) effect. Several approaches for optimization of soft magnetic properties and GMI effect of magnetic microwires covered with an insulating, flexible, and biocompatible glass coating with tunable magnetic properties are overviewed. The high GMI effect and soft magnetic properties, achieved even in as-prepared Co-rich microwires with a vanishing magnetostriction coefficient, can be further improved by appropriate heat treatment (including stress-annealing and Joule heating). Although as-prepared Fe-rich amorphous microwires exhibit low GMI ratio and rectangular hysteresis loops, stress-annealing, Joule heating, and combined stress-annealed followed by conventional furnace annealing can substantially improve the GMI effect (by more than an order of magnitude).es_ES
dc.description.sponsorshipThis work was funded by Spanish MCIU under PGC2018-099530-B-C31 (MCIU/AEI/FEDER, UE), by EU under “INFINITE”(Horizon 2020) project, by the Government of the Basque Country, under PIBA 2018-44, PUE_2021_1_0009, and Elkartek (CEMAP and AVANSITE) projects, by the Diputación Foral de Gipuzkoa in the frame of Programa “Red guipuzcoana de Ciencia, Tecnología e Innovación 2021” under 2021-CIEN-000007-01 project and by the University of Basque Country, under the COLAB20/15 project.es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.relationinfo:eu-repo/grantAgreement/MCIU/PGC2018-099530-B-C31es_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/
dc.subjectmagnetic microwireses_ES
dc.subjectsensor applicationses_ES
dc.subjectpost-processinges_ES
dc.subjectmagnetic anisotropyes_ES
dc.subjectmagnetostrictiones_ES
dc.titleDevelopment of Magnetically Soft Amorphous Microwires for Technological Applicationses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.date.updated2022-01-20T15:24:31Z
dc.rights.holder2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).es_ES
dc.relation.publisherversionhttps://www.mdpi.com/2227-9040/10/1/26/htmes_ES
dc.identifier.doi10.3390/chemosensors10010026
dc.departamentoesPolímeros y Materiales Avanzados: Física, Química y Tecnología
dc.departamentoesFísica aplicada I
dc.departamentoeuPolimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia
dc.departamentoeuFisika aplikatua I


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Except where otherwise noted, this item's license is described as 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).