A Hierarchical Machine Learning Solution for the Non-Invasive Diagnostic of Autonomic Dysreflexia
dc.contributor.author | Sagastibeltza Galarraga, Nagore | |
dc.contributor.author | Salazar Ramírez, Asier | |
dc.contributor.author | Yera Gil, Ainhoa | |
dc.contributor.author | Martínez Rodríguez, Raquel | |
dc.contributor.author | Muguerza Rivero, Javier Francisco | |
dc.contributor.author | Civicos Sánchez, Nora | |
dc.contributor.author | Acera Gil, María Ángeles | |
dc.date.accessioned | 2022-03-02T09:13:14Z | |
dc.date.available | 2022-03-02T09:13:14Z | |
dc.date.issued | 2022-02-15 | |
dc.identifier.citation | Electronics 11(4) : (2022) // Article ID 584 | es_ES |
dc.identifier.issn | 2079-9292 | |
dc.identifier.uri | http://hdl.handle.net/10810/55637 | |
dc.description.abstract | More than half of patients with high spinal cord injury (SCI) suffer from episodes of autonomic dysreflexia (AD), a condition that can lead to lethal situations, such as cerebral haemorrhage, if not treated correctly. Clinicians assess AD using clinical variables obtained from the patient’s history and physiological variables obtained invasively and non-invasively. This work aims to design a machine learning-based system to assist in the initial diagnosis of AD. For this purpose, 29 patients with SCI participated in a test at Cruces University Hospital in which data were collected using both invasive and non-invasive methods. The system proposed in this article is based on a two-level hierarchical classification to diagnose AD and only uses 35 features extracted from the non-invasive stages of the experiment (clinical and physiological features). The system achieved a 93.10% accuracy with a zero false negative rate for the class of having the disease, an essential condition for treating patients according to medical criteria. | es_ES |
dc.description.sponsorship | This work was partially funded by the Department of Education, Universities and Research of the Basque Government (ADIAN, IT-980-16), by the Spanish Ministry of Science, Innovation and Universities-National Research Agency and the European Regional Development Fund-ERDF (PhysComp, TIN2017-85409-P), and from the State Research Agency (AEI, Spain) under grant agreement No. RED2018-102312-T (IA-Biomed). | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | MDPI | es_ES |
dc.relation | info:eu-repo/grantAgreement/MICINN/2017-85409-P | es_ES |
dc.relation | info:eu-repo/grantAgreement/MICINN/RED2018-102312-T | es_ES |
dc.rights | info:eu-repo/semantics/openAccess | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by/3.0/es/ | |
dc.subject | autonomic dysreflexia detection | es_ES |
dc.subject | physiological computing | es_ES |
dc.subject | supervised-learning techniques | es_ES |
dc.subject | eHealth | es_ES |
dc.subject | disease diagnosis | es_ES |
dc.title | A Hierarchical Machine Learning Solution for the Non-Invasive Diagnostic of Autonomic Dysreflexia | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.date.updated | 2022-02-24T14:50:21Z | |
dc.rights.holder | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). | es_ES |
dc.relation.publisherversion | https://www.mdpi.com/2079-9292/11/4/584/htm | es_ES |
dc.identifier.doi | 10.3390/electronics11040584 | |
dc.departamentoes | Arquitectura y Tecnología de Computadores | |
dc.departamentoes | Ingeniería de sistemas y automática | |
dc.departamentoes | Lenguajes y sistemas informáticos | |
dc.departamentoeu | Konputagailuen Arkitektura eta Teknologia | |
dc.departamentoeu | Sistemen ingeniaritza eta automatika | |
dc.departamentoeu | Lengoaia eta Sistema Informatikoak |
Files in this item
This item appears in the following Collection(s)
Except where otherwise noted, this item's license is described as 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).