Show simple item record

dc.contributor.authorSagastibeltza Galarraga, Nagore
dc.contributor.authorSalazar Ramírez, Asier
dc.contributor.authorYera Gil, Ainhoa ORCID
dc.contributor.authorMartínez Rodríguez, Raquel ORCID
dc.contributor.authorMuguerza Rivero, Javier Francisco
dc.contributor.authorCivicos Sánchez, Nora
dc.contributor.authorAcera Gil, María Ángeles
dc.date.accessioned2022-03-02T09:13:14Z
dc.date.available2022-03-02T09:13:14Z
dc.date.issued2022-02-15
dc.identifier.citationElectronics 11(4) : (2022) // Article ID 584es_ES
dc.identifier.issn2079-9292
dc.identifier.urihttp://hdl.handle.net/10810/55637
dc.description.abstractMore than half of patients with high spinal cord injury (SCI) suffer from episodes of autonomic dysreflexia (AD), a condition that can lead to lethal situations, such as cerebral haemorrhage, if not treated correctly. Clinicians assess AD using clinical variables obtained from the patient’s history and physiological variables obtained invasively and non-invasively. This work aims to design a machine learning-based system to assist in the initial diagnosis of AD. For this purpose, 29 patients with SCI participated in a test at Cruces University Hospital in which data were collected using both invasive and non-invasive methods. The system proposed in this article is based on a two-level hierarchical classification to diagnose AD and only uses 35 features extracted from the non-invasive stages of the experiment (clinical and physiological features). The system achieved a 93.10% accuracy with a zero false negative rate for the class of having the disease, an essential condition for treating patients according to medical criteria.es_ES
dc.description.sponsorshipThis work was partially funded by the Department of Education, Universities and Research of the Basque Government (ADIAN, IT-980-16), by the Spanish Ministry of Science, Innovation and Universities-National Research Agency and the European Regional Development Fund-ERDF (PhysComp, TIN2017-85409-P), and from the State Research Agency (AEI, Spain) under grant agreement No. RED2018-102312-T (IA-Biomed).es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.relationinfo:eu-repo/grantAgreement/MICINN/2017-85409-Pes_ES
dc.relationinfo:eu-repo/grantAgreement/MICINN/RED2018-102312-Tes_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/
dc.subjectautonomic dysreflexia detectiones_ES
dc.subjectphysiological computinges_ES
dc.subjectsupervised-learning techniqueses_ES
dc.subjecteHealthes_ES
dc.subjectdisease diagnosises_ES
dc.titleA Hierarchical Machine Learning Solution for the Non-Invasive Diagnostic of Autonomic Dysreflexiaes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.date.updated2022-02-24T14:50:21Z
dc.rights.holder2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).es_ES
dc.relation.publisherversionhttps://www.mdpi.com/2079-9292/11/4/584/htmes_ES
dc.identifier.doi10.3390/electronics11040584
dc.departamentoesArquitectura y Tecnología de Computadores
dc.departamentoesIngeniería de sistemas y automática
dc.departamentoesLenguajes y sistemas informáticos
dc.departamentoeuKonputagailuen Arkitektura eta Teknologia
dc.departamentoeuSistemen ingeniaritza eta automatika
dc.departamentoeuLengoaia eta Sistema Informatikoak


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Except where otherwise noted, this item's license is described as 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).