Show simple item record

dc.contributor.authorUgarte Anero, Ainara
dc.contributor.authorFernández Gámiz, Unai
dc.contributor.authorPortal Porras, Koldo
dc.contributor.authorZulueta Guerrero, Ekaitz
dc.contributor.authorUrbina García, Oskar
dc.date.accessioned2022-04-29T07:35:27Z
dc.date.available2022-04-29T07:35:27Z
dc.date.issued2022-04
dc.identifier.citationScirntific Reports 12 : (2022) // Article ID 6405es_ES
dc.identifier.issn2045-2322
dc.identifier.urihttp://hdl.handle.net/10810/56417
dc.description.abstract[EN] The conduct of respiratory droplets is the basis of the study to reduce the spread of a virus in society. The pandemic suffered in early 2020 due to COVID-19 shows the lack of research on the evaporation and fate of droplets exhaled in the environment. The current study, attempts to provide solution through computational fluid dynamics techniques based on a multiphase state with the help of Eulerian-Lagrangian techniques to the activity of respiratory droplets. A numerical study has shown how the behavior of droplets of pure water exhaled in the environment after a sneeze or cough have a dynamic equal to the experimental curve of Wells. The droplets of saliva have been introduced as a saline solution. Considering the mass transferred and the turbulence created, the results has showed that the ambient temperature and relative humidity are parameters that significantly affect the evaporation process, and therefore to the fate. Evaporation time tends to be of a higher value when the temperature affecting the environment is lower. With constant parameters of particle diameter and ambient temperature, an increase in relative humidity increases the evaporation time. A larger particle diameter is consequently transported at a greater distance, since the opposite force it affects is the weight. Finally, a neural network-based model is presented to predict particle evaporation time.es_ES
dc.description.sponsorshipThe authors are thankful to the government of the Basque Country for the financial support of ELKARTEK21/10 KK-2021/00014 and ELKARTEK20/78 KK-2020/00114 research programs, respectively.es_ES
dc.language.isoenges_ES
dc.publisherNature Researches_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.titleComputational characterization of the behavior of a saliva droplet in a social environmentes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.holder© 2022. The Author(s). This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.es_ES
dc.rights.holderAtribución 3.0 España*
dc.relation.publisherversionhttps://www.nature.com/articles/s41598-022-10180-5es_ES
dc.identifier.doi10.1038/s41598-022-10180-5
dc.departamentoesIngeniería Energéticaes_ES
dc.departamentoesIngeniería de sistemas y automáticaes_ES
dc.departamentoeuEnergia Ingenieritzaes_ES
dc.departamentoeuSistemen ingeniaritza eta automatikaes_ES


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

© 2022. The Author(s). This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Except where otherwise noted, this item's license is described as © 2022. The Author(s). This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.