Show simple item record

dc.contributor.authorPereiro Díez, Xandra ORCID
dc.contributor.authorBeriain Viguria, Sandra
dc.contributor.authorRodríguez, Lara
dc.contributor.authorRoiz Valle, David
dc.contributor.authorRuzafa Andrés, Noelia ORCID
dc.contributor.authorVecino Cordero, Elena ORCID
dc.date.accessioned2022-05-19T09:48:21Z
dc.date.available2022-05-19T09:48:21Z
dc.date.issued2022
dc.identifier.citationFrontiers in Neuroscience 16 : (2022) // Article ID 854278es_ES
dc.identifier.issn1662-453X
dc.identifier.urihttp://hdl.handle.net/10810/56606
dc.description.abstract[EN] Muller cells are the principal glial cells in the retina and they assume many of the functions carried out by astrocytes, oligodendrocytes and ependymal cells in other regions of the central nervous system. Muller cells express growth factors, neurotransmitter transporters and antioxidant agents that could fulfill important roles in preventing excitotoxic damage to retinal neurons. Vertebrate Muller cells are well-defined cells, characterized by a common set of features throughout the phylum. Nevertheless, several major differences have been observed among the Muller cells in distinct vertebrates, such as neurogenesis, the capacity to reprogram fish Muller glia to neurons. Here, the Muller glia of the largest adult mammal in the world, the whale, have been analyzed, and given the difficulties in obtaining cetacean cells for study, these whale glia were analyzed both in primary cultures and as immortalized whale Muller cells. After isolating the retina from the eye of a beached sei whale (Balaenoptera borealis), primary Muller cell cultures were established and once the cultures reached confluence, half of the cultures were immortalized with the simian virus 40 (SV40) large T-antigen commonly used to immortalize human cell lines. The primary cell cultures were grown until cells reached senescence. Expression of the principal molecular markers of Muller cells (GFAP, Vimentin and Glutamine synthetase) was studied in both primary and immortalized cells at each culture passage. Proliferation kinetics of the cells were analyzed by time-lapse microscopy: the time between divisions, the time that cells take to divide, and the proportion of dividing cells in the same field. The karyotypes of the primary and immortalized whale Muller cells were also characterized. Our results shown that W21M proliferate more rapidly and they have a stable karyotype. W21M cells display a heterogeneous cell morphology, less motility and a distinctive expression of some typical molecular markers of Muller cells, with an increase in dedifferentiation markers like alpha-SMA and beta-III tubulin, while they preserve their GS expression depending on the culture passage. Here we also discuss the possible influence of the animal's age and size on these cells, and on their senescence.es_ES
dc.description.sponsorshipThis study was supported by ELKARTEK (KK-2019/00086), MINECO-Retos (PID2019-111139RB-I00), Grupos UPV/EHU (GIU 2018/150), and Proyectos de Investigación Básica y/o Aplicada (PIBA_2020_1_0026) to EV, Basque Government postdoctoral grant (POS_2020_2_0031) to XP, UPV/EHU- Bordeaux predoctoral grant (PIFBUR20/10) to SB, and UPV/EHU postdoctoral grant (ESPDOC20/058) to NR.es_ES
dc.language.isoenges_ES
dc.publisherFrontiers Mediaes_ES
dc.relationinfo:eu-repo/grantAgreement/MICINN/PID2019-111139RB-I00es_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.subjectMuller cellses_ES
dc.subjectgliaes_ES
dc.subjectretinaes_ES
dc.subjectwhalees_ES
dc.subjectimmortalizationes_ES
dc.subjectcell linees_ES
dc.titleCharacteristics of Whale Muller Glia in Primary and Immortalized Cultureses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.holder© 2022 Pereiro, Beriain, Rodriguez, Roiz-Valle, Ruzafa and Vecino. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.es_ES
dc.rights.holderAtribución 3.0 España*
dc.relation.publisherversionhttps://www.frontiersin.org/articles/10.3389/fnins.2022.854278/fulles_ES
dc.identifier.doi10.3389/fnins.2022.854278
dc.departamentoesBiología celular e histologíaes_ES
dc.departamentoeuZelulen biologia eta histologiaes_ES


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

© 2022 Pereiro, Beriain, Rodriguez, Roiz-Valle, Ruzafa and Vecino. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
Except where otherwise noted, this item's license is described as © 2022 Pereiro, Beriain, Rodriguez, Roiz-Valle, Ruzafa and Vecino. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.