Show simple item record

dc.contributor.authorPalma Leiva, Ana Belén
dc.contributor.authorChara Ventura, Juan Carlos
dc.contributor.authorMontilla López, Alejandro ORCID
dc.contributor.authorOtxoa de Amezaga, Amaia
dc.contributor.authorRuiz Jaen, Francisca
dc.contributor.authorPlanas Obradors, Anna María
dc.contributor.authorMatute Almau, Carlos José
dc.contributor.authorPérez Samartín, Alberto Luis ORCID
dc.contributor.authorDomercq García, María ORCID
dc.date.accessioned2022-05-19T10:24:50Z
dc.date.available2022-05-19T10:24:50Z
dc.date.issued2022
dc.identifier.citationFrontiers in Cell and Developmental Biology 10 : (2022) // Article ID 841548es_ES
dc.identifier.issn2296-634X
dc.identifier.urihttp://hdl.handle.net/10810/56610
dc.description.abstract[EN] Abnormalities in myelination are associated to behavioral and cognitive dysfunction in neurodevelopmental psychiatric disorders. Thus, therapies to promote or accelerate myelination could potentially ameliorate symptoms in autism. Clemastine, a histamine H1 antagonist with anticholinergic properties against muscarinic M1 receptor, is the most promising drug with promyelinating properties. Clemastine penetrates the blood brain barrier efficiently and promotes remyelination in different animal models of neurodegeneration including multiple sclerosis, ischemia and Alzheimer's disease. However, its role in myelination during development is unknown. We showed that clemastine treatment during development increased oligodendrocyte differentiation in both white and gray matter. However, despite the increase in the number of oligodendrocytes, conduction velocity of myelinated fibers of corpus callosum decreased in clemastine treated mice. Confocal and electron microscopy showed a reduction in the number of myelinated axons and nodes of Ranvier and a reduction of myelin thickness in corpus callosum. To understand the mechanisms leading to myelin formation impairment in the presence of an excess of myelinating oligodendrocytes, we focused on microglial cells that also express muscarinic M1 receptors. Importantly, the population of CD11c(+) microglia cells, necessary for myelination, as well as the levels of insulin growth factor-1 decrease in clemastine-treated mice. Altogether, these data suggest that clemastine impact on myelin development is more complex than previously thought and could be dependent on microglia-oligodendrocyte crosstalk. Further studies are needed to clarify the role of microglia cells on developmental myelination.es_ES
dc.description.sponsorshipThis work was supported by Spanish Ministry of Education and Science (SAF 2016-75292- R); Spanish Ministry of Science andInnovation (PID 2019-109724RB-I00); Basque Government (PI-2016-1-0016); the University of the Basque Country (UPV/EHU);and Centro de Investigacion Biomedica en Red, EnfermedadesNeurodegenerativas (CIBERNED; grant CB06/05/0076). AP hasa predoctoral fellowship from the University of the Basque Country (UPV/EHU), AM has a predoctoral fellowship fromthe Spanish Ministry of Education and Science and AO-de-A hasa postdoctoral fellowship from the Basque Governmentes_ES
dc.language.isoenges_ES
dc.publisherFrontiers Mediaes_ES
dc.relationinfo:eu-repo/grantAgreement/MICINN/2019-109724RB-I00es_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.subjectclemastinees_ES
dc.subjectmyelines_ES
dc.subjectoligodendrocytees_ES
dc.subjectmicrogliaes_ES
dc.subjectdevelopmentes_ES
dc.titleClemastine Induces an Impairment in Developmental Myelinationes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.holder© 2022 Palma, Chara, Montilla, Otxoa-de-Amezaga, Ruíz-Jaén, Planas, Matute, Pérez-Samartín and Domercq. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.es_ES
dc.rights.holderAtribución 3.0 España*
dc.relation.publisherversionhttps://www.frontiersin.org/articles/10.3389/fcell.2022.841548/fulles_ES
dc.identifier.doi10.3389/fcell.2022.841548
dc.departamentoesNeurocienciases_ES
dc.departamentoeuNeurozientziakes_ES


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

© 2022 Palma, Chara, Montilla, Otxoa-de-Amezaga, Ruíz-Jaén, Planas, Matute, Pérez-Samartín and Domercq. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
Except where otherwise noted, this item's license is described as © 2022 Palma, Chara, Montilla, Otxoa-de-Amezaga, Ruíz-Jaén, Planas, Matute, Pérez-Samartín and Domercq. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.