Show simple item record

dc.contributor.authorMaiz, Jon
dc.contributor.authorVerde Sesto, Ester
dc.contributor.authorAsenjo Sanz, Isabel
dc.contributor.authorMangin-Thro, Lucile
dc.contributor.authorFrick, Bernhard
dc.contributor.authorPomposo Alonso, José Adolfo ORCID
dc.contributor.authorArbe Méndez, María Aranzazu
dc.contributor.authorColmenero de León, Juan ORCID
dc.date.accessioned2022-05-20T08:47:44Z
dc.date.available2022-05-20T08:47:44Z
dc.date.issued2022-02
dc.identifier.citationMacromolecules 55(6) : 2320-2332 (2022)es_ES
dc.identifier.issn0024-9297
dc.identifier.issn1520-5835
dc.identifier.urihttp://hdl.handle.net/10810/56632
dc.description.abstract[EN] We have investigated an all-polymer nanocomposite (NC) consisting of single-chain nanoparticles (SCNPs) immersed in a matrix of linear chains of their precursors (25/75% composition in weight). The SCNPs were previously synthesized via "click" chemistry, which induces intramolecular cross-links in the individual macromolecules accompanied by a slight shift (5-8 K) of the glass transition temperature toward higher values and a broadening of the dynamic response with respect to the raw precursor material. The selective investigation of the dynamics of the NC components has been possible by using properly isotopically labeled materials and applying quasielastic neutron scattering techniques. Results have been analyzed in the momentum transfer range where the coherent scattering contribution is minimal, as determined by complementary neutron diffraction experiments with polarization analysis. We observe the development of dynamic heterogeneity in the intermediate scattering function of the NC components, which grows with increasing time. Local motions in the precursor matrix of the NC are accelerated with respect to the reference bulk behavior, while the displacements of SCNPs' hydrogens show enhanced deviations from Gaussian and exponential behavior compared with the pure melt of SCNPs. The resulting averaged behavior in the NC coincides with that of the pure precursor, in accordance with the macroscopic observations by differential scanning calorimetry (DSC) experiments.es_ES
dc.description.sponsorshipWe acknowledge the Grant PGC2018-094548-B-I00 funded by MCIN/AEI/10.13039/501100011033 and by "ERDF A way of making Europe". We also acknowledge the financial support of Eusko Jaurlaritza, codes: IT-1175-19 and IT1566-22 and the Open Access funding provided by University of Basque Country.es_ES
dc.language.isoenges_ES
dc.publisherAmerican Chemical Societyes_ES
dc.relationinfo:eu-repo/grantAgreement/MICIU/PGC2018-094548-B-I00es_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.subjectnanoscopic confinementes_ES
dc.subjectmicroscopic dynamicses_ES
dc.subjectpoly(ethylene oxide)es_ES
dc.subjectpolystyrenees_ES
dc.titleDisentangling Component Dynamics in an All-Polymer Nanocomposite Based on Single-Chain Nanoparticles by Quasielastic Neutron Scatteringes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.holder© 2022 American Chemical Society. Attribution 4.0 International (CC BY 4.0)es_ES
dc.rights.holderAtribución 3.0 España*
dc.relation.publisherversionhttps://pubs.acs.org/doi/10.1021/acs.macromol.1c02382es_ES
dc.identifier.doi10.1021/acs.macromol.1c02382
dc.departamentoesPolímeros y Materiales Avanzados: Física, Química y Tecnologíaes_ES
dc.departamentoeuPolimero eta Material Aurreratuak: Fisika, Kimika eta Teknologiaes_ES


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

© 2022 American Chemical Society. Attribution 4.0 International (CC BY 4.0)
Except where otherwise noted, this item's license is described as © 2022 American Chemical Society. Attribution 4.0 International (CC BY 4.0)