Show simple item record

dc.contributor.authorTestore, Daniele
dc.contributor.authorZoso, Alice
dc.contributor.authorKortaberria Altzerreka, Galder ORCID
dc.contributor.authorSangermano, Marco
dc.contributor.authorChiono, Valeria
dc.date.accessioned2022-09-13T16:54:05Z
dc.date.available2022-09-13T16:54:05Z
dc.date.issued2022-06
dc.identifier.citationFrontiers in Bioengineering and Biotechnology 10 : (2022) // Article ID 897575es_ES
dc.identifier.issn2296-4185
dc.identifier.urihttp://hdl.handle.net/10810/57725
dc.description.abstractElectroconductive hydrogels (ECHs) have attracted interest for tissue engineering applications due to their ability to promote the regeneration of electroactive tissues. Hence, ECHs with tunable electrical and mechanical properties, bioactivity, biocompatibility and biodegradability are demanded. In this work, ECHs based on photo-crosslinked blends of polyethylene glycol diacrylate (PEGDA) and gelatin with different PEGDA:gelatin ratios (1:1, 1.5:1 and 2:1 wt./wt.), and containing poly (3,4-ethylenedioxythiophene):poly (styrene sulfonate) (PEDOT:PSS) (0.0, 0.1, 0,3 and 0.5% w/v%) were prepared. Main novelty was the use of gelatin as bioactive component and co-initiator in the photo-crosslinking process, leading to its successful incorporation in the hydrogel network. Physical properties could be modulated by the initial PEGDA:gelatin weight ratio. Pristine hydrogels with increasing PEGDA:gelatin ratio showed: (i) an increasing compressive elastic modulus from 5 to 28 kPa; (ii) a decreasing weight loss from 62% to 43% after 2 weeks incubation in phosphate buffered saline at 37 degrees C; (iii) reduced crosslinking time; (iv) higher crosslinking density and (v) lower water absorption. The addition of PEDOT:PSS in the hydrogels reduced photo-crosslinking time (from 60 to 10 s) increasing their surface and bulk electrical properties. Finally, in vitro tests with human cardiac fibroblasts showed that hydrogels were cytocompatible and samples with 1.5:1 initial PEGDA:gelatin ratio promoted the highest cell adhesion at 24 h. Results from this work suggested the potential of electroconductive photo-curable PEGDA-gelatin/PEDOT:PSS hydrogels for prospective cardiac tissue engineering applications.es_ES
dc.description.sponsorshipThis work was supported by BIORECAR project. The project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 Research and Innovation Programe (Grant Agreement No. 772168).es_ES
dc.language.isoenges_ES
dc.publisherFrontiers Mediaes_ES
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/772168es_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.subjecthydrogelses_ES
dc.subjectconductivityes_ES
dc.subjectphoto-crosslinkinges_ES
dc.subjectPEGDAes_ES
dc.subjectgelatines_ES
dc.subjectPEDOTes_ES
dc.subjectPSSes_ES
dc.subjectcardiaces_ES
dc.subjecttissue engineeringes_ES
dc.titleElectroconductive Photo-Curable PEGDA-Gelatin/PEDOT:PSS Hydrogels for Prospective Cardiac Tissue Engineering Applicationes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.holder© 2022 Testore, Zoso, Kortaberria, Sangermano and Chiono. This is an open- access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.es_ES
dc.rights.holderAtribución 3.0 España*
dc.relation.publisherversionhttps://www.frontiersin.org/articles/10.3389/fbioe.2022.897575/fulles_ES
dc.identifier.doi10.3389/fbioe.2022.897575
dc.contributor.funderEuropean Commission
dc.departamentoesIngeniería química y del medio ambientees_ES
dc.departamentoeuIngeniaritza kimikoa eta ingurumenaren ingeniaritzaes_ES


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

© 2022 Testore, Zoso, Kortaberria, Sangermano and Chiono. This is an open-
access article distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with these terms.
Except where otherwise noted, this item's license is described as © 2022 Testore, Zoso, Kortaberria, Sangermano and Chiono. This is an open- access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.