Show simple item record

dc.contributor.authorSidler, Dominik
dc.contributor.authorRuggenthaler, Michael
dc.contributor.authorSchäfer, Christian
dc.contributor.authorRonca, Enrico
dc.contributor.authorRubio Secades, Angel
dc.date.accessioned2022-09-20T10:35:26Z
dc.date.available2022-09-20T10:35:26Z
dc.date.issued2022-06-21
dc.identifier.citationJournal of Energy Chemical Physics156(23) : (2022) // Article ID 230901es_ES
dc.identifier.issn0021-9606
dc.identifier.issn1089-7690
dc.identifier.urihttp://hdl.handle.net/10810/57784
dc.description.abstractThis Perspective provides a brief introduction into the theoretical complexity of polaritonic chemistry, which emerges from the hybrid nature of strongly coupled light-matter states. To tackle this complexity, the importance of ab initio methods is highlighted. Based on those, novel ideas and research avenues are developed with respect to quantum collectivity, as well as for resonance phenomena immanent in reaction rates under vibrational strong coupling. Indeed, fundamental theoretical questions arise about the mesoscopic scale of quantum-collectively coupled molecules when considering the depolarization shift in the interpretation of experimental data. Furthermore, to rationalize recent findings based on quantum electrodynamical density-functional theory (QEDFT), a simple, but computationally efficient, Langevin framework is proposed based on well-established methods from molecular dynamics. It suggests the emergence of cavity-induced non-equilibrium nuclear dynamics, where thermal (stochastic) resonance phenomena could emerge in the absence of external periodic driving. Overall, we believe that the latest ab initio results indeed suggest a paradigmatic shift for ground-state chemical reactions under vibrational strong coupling from the collective quantum interpretation toward a more local, (semi)-classically and non-equilibrium dominated perspective. Finally, various extensions toward a refined description of cavity-modified chemistry are introduced in the context of QEDFT, and future directions of the field are sketched.es_ES
dc.description.sponsorshipWe thank Goran Johansson for critical comments and inspiring discussions. This work was made possible through the support of the RouTe Project (Grant No. 13N14839), financed by the Federal Ministry of Education and Research [Bundesministerium fur Bildung und Forschung (BMBF)] and supported by the European Research Council (Grant No. ERC-2015-AdG694097), the Swedish Research Council (VR) through Grant No. 2016-06059, the Cluster of Excellence "CUI: Advanced Imaging of Matter" of the Deutsche Forschungsgemeinschaft (DFG), EXC 2056 (Project ID 390715994), and the Grupos Consolidados (Grant No. IT1249-19). The Flatiron Institute is a division of the Simons Foundation.es_ES
dc.language.isoenges_ES
dc.publisherAIP Publishinges_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.subjectmolecular-dynamics simulationes_ES
dc.subjectsenergy-transferes_ES
dc.subjectcavitieses_ES
dc.titleA perspective on ab initio modeling of polaritonic chemistry: The role of non-equilibrium effects and quantum collectivityes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.holder© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0094956es_ES
dc.rights.holderAtribución 3.0 España*
dc.relation.publisherversionhttps://aip.scitation.org/doi/10.1063/5.0094956es_ES
dc.identifier.doi10.1063/5.0094956
dc.departamentoesPolímeros y Materiales Avanzados: Física, Química y Tecnologíaes_ES
dc.departamentoeuPolimero eta Material Aurreratuak: Fisika, Kimika eta Teknologiaes_ES


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0094956
Except where otherwise noted, this item's license is described as © 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0094956