dc.contributor.author | Gutiérrez García, Francisco Javier | |
dc.contributor.author | Höhle, Ulrich | |
dc.contributor.author | Kubiak, Tomasz | |
dc.date.accessioned | 2022-11-11T16:11:38Z | |
dc.date.available | 2022-11-11T16:11:38Z | |
dc.date.issued | 2022-09 | |
dc.identifier.citation | Fuzzy Sets and Systems 444 : 103-130 (2022) | es_ES |
dc.identifier.issn | 0165-0114 | |
dc.identifier.issn | 1872-6801 | |
dc.identifier.uri | http://hdl.handle.net/10810/58322 | |
dc.description.abstract | There have been developed several approaches to a quantale-valued quantitative domain theory. If the quantale Q is integral
and commutative, then Q-valued domains are Q-enriched, and every Q-enriched domain is sober in its Scott Q-valued topology,
where the topological «intersection axiom» is expressed in terms of the binary meet of Q (cf. D. Zhang, G. Zhang, Fuzzy Sets and
Systems (2022)). In this paper, we provide a framework for the development of Q-enriched dcpos and Q-enriched domains in the
general setting of unital quantales (not necessarily commutative or integral). This is achieved by introducing and applying right
subdistributive quasi-magmas on Q in the sense of the category Cat(Q). It is important to point out that our quasi-magmas on Q
are in tune with the «intersection axiom» of Q-enriched topologies. When Q is involutive, each Q-enriched domain becomes sober
in its Q-enriched Scott topology. This paper also offers a perspective to apply Q-enriched dcpos to quantale computation | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Elsevier | es_ES |
dc.rights | info:eu-repo/semantics/openAccess | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/es/ | * |
dc.subject | unital quantale | es_ES |
dc.subject | subdistributive quasi-magma on a quantale | es_ES |
dc.subject | ⋄-flat contravariant | es_ES |
dc.title | A theory of quantale-enriched dcpos and their topologization | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.rights.holder | © 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/). | es_ES |
dc.rights.holder | Atribución-NoComercial-SinDerivadas 3.0 España | * |
dc.relation.publisherversion | https://www.sciencedirect.com/science/article/pii/S0165011422000574?via%3Dihub | es_ES |
dc.identifier.doi | 10.1016/j.fss.2022.02.007 | |
dc.departamentoes | Matemáticas | es_ES |
dc.departamentoeu | Matematika | es_ES |