Show simple item record

dc.contributor.authorTawade, Jagadish V.
dc.contributor.authorGuled, C. N.
dc.contributor.authorNoeiaghdam, Samad
dc.contributor.authorFernández Gámiz, Unai
dc.contributor.authorGovindan, Vediyappan
dc.contributor.authorBalamuralitharan, Sundarappan
dc.date.accessioned2022-11-14T17:52:41Z
dc.date.available2022-11-14T17:52:41Z
dc.date.issued2022-09
dc.identifier.citationResults in Engineering 15 : (2022) // Article ID 100448es_ES
dc.identifier.issn2590-1230
dc.identifier.urihttp://hdl.handle.net/10810/58341
dc.description.abstractThe current research explores the problem of steady laminar flow of nanofluid on a two dimensional boundary layer using heat transfer of Cassona cross the linearly stretching sheet. The governing equations are partial differential equations which are transformed into non-linear ordinary differential equations by using some similarity transformation. The converted form of the combined non-linear higher-order ODEswith a set of boundary conditions are solved by means of Runge-Kutta 4th-order approach along with the shooting method. The nanoparticle concentration profiles, velocity, and temperature are examined by taking account of their influence of Prandtl number, "Brownian motion parameter ", Lewis number, thermophoresis, and Casson fluid parameter. It is reported that the temperature increase as Nt and Nb increases which causes thickening of the thermal boundary layer. Also it is observed that, there is increment in temperature profile for increasing values of Brownian motion parameter and the energy distribution grows with increment in the values of Thermophoresis parameter. The comparison for the local Nusselt & local Sherwood number has been tabulated with respect to variation of the Brownian Motion Parameter and Thermophoresis parameter. All the findings of the results are graphically represented and discussed.es_ES
dc.description.sponsorshipFunding The work of U.F.-G. was supported by the government of the Basque Country for the ELKARTEK21/10 KK-2021/00014 and ELKARTEK22/85 research programs, respectively.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subjectlinear stretching sheetes_ES
dc.subjectsimilarity transformationes_ES
dc.subjectheat transferes_ES
dc.subjectthermophoresises_ES
dc.subjectbrownian motiones_ES
dc.subjectcasson nanofluides_ES
dc.titleEffects of thermophoresis and Brownian motion for thermal and chemically reacting Casson nanofluid flow over a linearly stretching sheetes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.holder© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by- nc-nd/4.0/).es_ES
dc.rights.holderAtribución-NoComercial-SinDerivadas 3.0 España*
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S2590123022001189?via%3Dihubes_ES
dc.identifier.doi10.1016/j.rineng.2022.100448
dc.departamentoesIngeniería Energéticaes_ES
dc.departamentoeuEnergia Ingenieritzaes_ES


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).
Except where otherwise noted, this item's license is described as © 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by- nc-nd/4.0/).