3D-Printed Hybrid Collagen/GelMA Hydrogels for Tissue Engineering Applications
View/ Open
Date
2022-10-25Author
Nagaraj, Anushree
Etxabide Etxeberria, Alaitz
Naffa, Rafea
Zidan, Ghada
Seyfoddin, Ali
Metadata
Show full item record
Biology 11(11) : (2022) // Article ID 1561
Abstract
Bioprinting is an emerging technology involved in the fabrication of three-dimensional tissue constructs for the repair and regeneration of various tissues and organs. Collagen, a natural protein found abundantly in the extracellular matrix of several tissues, can be extracted from collagen-rich tissues of animals such as sheep, cows, rats, pigs, horses, birds, and marine animals. However, due to the poor printability of collagen bioinks, biocompatible collagen scaffolds that mimic the extracellular matrix (ECM) are difficult to fabricate using bioprinting techniques. Gelatin methacrylate (GelMA), a semi-synthetic polymer with tunable physical and chemical properties, has been found to be a promising biomaterial in various bioprinting applications. The printability of collagen can be improved by combining it with semi-synthetic polymers such as GelMA to develop hybrid hydrogels. Such hybrid hydrogels printed have also been identified to have enhanced mechanical properties. Hybrid GelMA meshes have not previously been prepared with collagen from ovine sources. This study provides a novel comparison between the properties of hybrid meshes with ovine skin and bovine hide collagen. GelMA (8% w/v) was integrated with three different concentrations (0.5%, 1%, and 2%) of bovine and ovine collagen forming hybrid hydrogels inks that were printed into meshes with enhanced properties. The maximum percentage of collagen suitable for integration with GelMA, forming hybrid hydrogels with a stable degradation rate was 1%. The water-soluble nature of ovine collagen promoted faster degradation of the hybrid meshes, although the structural crosslinking was identified to be higher than bovine hybrid meshes. The 1% bovine collagen hybrid meshes stood out in terms of their stable degradation rates.
Collections
Except where otherwise noted, this item's license is described as © 2022 by the authors.Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/ 4.0/).