A New Four-Step Iterative Procedure for Approximating Fixed Points with Application to 2D Volterra Integral Equations
dc.contributor.author | Hammad, Hasanen A. | |
dc.contributor.author | Rehman, Habib Ur | |
dc.contributor.author | De la Sen Parte, Manuel | |
dc.date.accessioned | 2022-11-25T17:02:57Z | |
dc.date.available | 2022-11-25T17:02:57Z | |
dc.date.issued | 2022-11-14 | |
dc.identifier.citation | Mathematics 10(22) : (2022) // Article ID 4257 | es_ES |
dc.identifier.issn | 2227-7390 | |
dc.identifier.uri | http://hdl.handle.net/10810/58558 | |
dc.description.abstract | This work is devoted to presenting a new four-step iterative scheme for approximating fixed points under almost contraction mappings and Reich–Suzuki-type nonexpansive mappings (RSTN mappings, for short). Additionally, we demonstrate that for almost contraction mappings, the proposed algorithm converges faster than a variety of other current iterative schemes. Furthermore, the new iterative scheme’s ω2—stability result is established and a corroborating example is given to clarify the concept of ω2—stability. Moreover, weak as well as a number of strong convergence results are demonstrated for our new iterative approach for fixed points of RSTN mappings. Further, to demonstrate the effectiveness of our new iterative strategy, we also conduct a numerical experiment. Our major finding is applied to demonstrate that the two-dimensional (2D) Volterra integral equation has a solution. Additionally, a comprehensive example for validating the outcome of our application is provided. Our results expand and generalize a number of relevant results in the literature. | es_ES |
dc.description.sponsorship | This work was supported in part by the Basque Government under Grant IT1555-22. | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | MDPI | es_ES |
dc.rights | info:eu-repo/semantics/openAccess | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
dc.subject | RSTN mapping | es_ES |
dc.subject | almost contraction mapping | es_ES |
dc.subject | ω2—stability | es_ES |
dc.subject | fixed point methodology | es_ES |
dc.subject | nonlinear integral problem | es_ES |
dc.title | A New Four-Step Iterative Procedure for Approximating Fixed Points with Application to 2D Volterra Integral Equations | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.date.updated | 2022-11-24T14:43:33Z | |
dc.rights.holder | © 2022 by the authors.Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/ 4.0/). | es_ES |
dc.relation.publisherversion | https://www.mdpi.com/2227-7390/10/22/4257 | es_ES |
dc.identifier.doi | 10.3390/math10224257 | |
dc.departamentoes | Electricidad y electrónica | |
dc.departamentoeu | Elektrizitatea eta elektronika |
Files in this item
This item appears in the following Collection(s)
Except where otherwise noted, this item's license is described as © 2022 by the authors.Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/ 4.0/).