Show simple item record

dc.contributor.authorGarcía Pérez de Algaba, Manuel
dc.contributor.authorPonce Martínez, Mario
dc.contributor.authorMunuera Javaloy, Carlos
dc.contributor.authorPina Canelles, Vicente
dc.contributor.authorThapa, Manish J.
dc.contributor.authorTaketani, Bruno G.
dc.contributor.authorLeib, Martin
dc.contributor.authorDe Vega, Inés
dc.contributor.authorCasanova Marcos, Jorge
dc.contributor.authorHeimonen, Hermanni
dc.date.accessioned2023-01-20T18:03:50Z
dc.date.available2023-01-20T18:03:50Z
dc.date.issued2022-11
dc.identifier.citationPhysical Review Research 4 : (2022) // Article ID 043089es_ES
dc.identifier.issn2643-1564
dc.identifier.urihttp://hdl.handle.net/10810/59390
dc.description.abstractQuantum computers have the potential to efficiently simulate the dynamics of nanoscale NMR systems. In this work, we demonstrate that a noisy intermediate-scale quantum computer can be used to simulate and predict nanoscale NMR resonances. In order to minimize the required gate fidelities, we propose a superconducting application-specific Co-Design quantum processor that reduces the number of SWAP gates by over 90% for chips with more than 20 qubits. The processor consists of transmon qubits capacitively coupled via tunable couplers to a central co-planar waveguide resonator with a quantum circuit refrigerator (QCR) for fast resonator reset. The QCR implements the nonunitary quantum operations required to simulate nuclear hyperpolarization scenarios.es_ES
dc.description.sponsorshipThe authors would like to thank Caspar Ockeloen-Korppi, Alessandro Landra, and Johannes Heinsoo for their help in de- veloping the idea of the star-architecture chip, Jani Tuorila for his support in developing the gate theory, Amin Hosseinkhani and Tianhan Liu for reviewing the manuscript, and Hen- rikki Mäkynen and Hoang-Mai Nguyen for graphic design. J.C. additionally acknowledges the Ramón y Cajal program (RYC2018-025197-I). We further acknowledge support from Atos with the Quantum Learning Machine (QLM). Finally, the authors acknowledge financial support to BMBF through the Q-Exa Project No. FZK: 13N16062.es_ES
dc.language.isoenges_ES
dc.publisherAmerican Physical Societyes_ES
dc.relationinfo:eu-repo/grantAgreement/MICIU/RYC2018-025197-Ies_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.subjectPython frameworkes_ES
dc.subjectresonancees_ES
dc.subjectcircuitses_ES
dc.subjectdynamicses_ES
dc.subjectqutipes_ES
dc.titleCo-Design quantum simulation of nanoscale NMRes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.holderPublished by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.es_ES
dc.rights.holderAtribución 3.0 España*
dc.relation.publisherversionhttps://journals.aps.org/prresearch/abstract/10.1103/PhysRevResearch.4.043089es_ES
dc.identifier.doi10.1103/PhysRevResearch.4.043089
dc.departamentoesQuímica físicaes_ES
dc.departamentoeuKimika fisikoaes_ES


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.
Except where otherwise noted, this item's license is described as Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.