Co-Design quantum simulation of nanoscale NMR
dc.contributor.author | García Pérez de Algaba, Manuel | |
dc.contributor.author | Ponce Martínez, Mario | |
dc.contributor.author | Munuera Javaloy, Carlos | |
dc.contributor.author | Pina Canelles, Vicente | |
dc.contributor.author | Thapa, Manish J. | |
dc.contributor.author | Taketani, Bruno G. | |
dc.contributor.author | Leib, Martin | |
dc.contributor.author | De Vega, Inés | |
dc.contributor.author | Casanova Marcos, Jorge | |
dc.contributor.author | Heimonen, Hermanni | |
dc.date.accessioned | 2023-01-20T18:03:50Z | |
dc.date.available | 2023-01-20T18:03:50Z | |
dc.date.issued | 2022-11 | |
dc.identifier.citation | Physical Review Research 4 : (2022) // Article ID 043089 | es_ES |
dc.identifier.issn | 2643-1564 | |
dc.identifier.uri | http://hdl.handle.net/10810/59390 | |
dc.description.abstract | Quantum computers have the potential to efficiently simulate the dynamics of nanoscale NMR systems. In this work, we demonstrate that a noisy intermediate-scale quantum computer can be used to simulate and predict nanoscale NMR resonances. In order to minimize the required gate fidelities, we propose a superconducting application-specific Co-Design quantum processor that reduces the number of SWAP gates by over 90% for chips with more than 20 qubits. The processor consists of transmon qubits capacitively coupled via tunable couplers to a central co-planar waveguide resonator with a quantum circuit refrigerator (QCR) for fast resonator reset. The QCR implements the nonunitary quantum operations required to simulate nuclear hyperpolarization scenarios. | es_ES |
dc.description.sponsorship | The authors would like to thank Caspar Ockeloen-Korppi, Alessandro Landra, and Johannes Heinsoo for their help in de- veloping the idea of the star-architecture chip, Jani Tuorila for his support in developing the gate theory, Amin Hosseinkhani and Tianhan Liu for reviewing the manuscript, and Hen- rikki Mäkynen and Hoang-Mai Nguyen for graphic design. J.C. additionally acknowledges the Ramón y Cajal program (RYC2018-025197-I). We further acknowledge support from Atos with the Quantum Learning Machine (QLM). Finally, the authors acknowledge financial support to BMBF through the Q-Exa Project No. FZK: 13N16062. | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | American Physical Society | es_ES |
dc.relation | info:eu-repo/grantAgreement/MICIU/RYC2018-025197-I | es_ES |
dc.rights | info:eu-repo/semantics/openAccess | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by/3.0/es/ | * |
dc.subject | Python framework | es_ES |
dc.subject | resonance | es_ES |
dc.subject | circuits | es_ES |
dc.subject | dynamics | es_ES |
dc.subject | qutip | es_ES |
dc.title | Co-Design quantum simulation of nanoscale NMR | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.rights.holder | Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI. | es_ES |
dc.rights.holder | Atribución 3.0 España | * |
dc.relation.publisherversion | https://journals.aps.org/prresearch/abstract/10.1103/PhysRevResearch.4.043089 | es_ES |
dc.identifier.doi | 10.1103/PhysRevResearch.4.043089 | |
dc.departamentoes | Química física | es_ES |
dc.departamentoeu | Kimika fisikoa | es_ES |
Files in this item
This item appears in the following Collection(s)
Except where otherwise noted, this item's license is described as Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.