dc.contributor.author | Bezci, Yüksel Ediz | |
dc.contributor.author | Aghaei, Vahid Tavakol | |
dc.contributor.author | Akbulut, Batuhan Ekin | |
dc.contributor.author | Allahviranloo, Tofigh | |
dc.contributor.author | Fernández Gámiz, Unai | |
dc.contributor.author | Noeiaghdam, Samad | |
dc.date.accessioned | 2023-01-20T18:04:45Z | |
dc.date.available | 2023-01-20T18:04:45Z | |
dc.date.issued | 2022-12 | |
dc.identifier.citation | Results in Engineering 16 : (2022) // Article ID 100685 | es_ES |
dc.identifier.issn | 2590-1230 | |
dc.identifier.uri | http://hdl.handle.net/10810/59394 | |
dc.description.abstract | Controlling underactuated open-loop unstable systems is challenging. In this study, first, both nonlinear and linear models of a dual-axis reaction wheel pendulum (DA-RWP) are extracted by employing Lagrangian equa-tions which are based on energy methods. Then to control the system and stabilize the pendulum's angle in the upright position, fuzzy logic based controllers for both x -y directions are developed. To show the efficiency of the designed intelligent controller, comparisons are made with its classical optimal control counterparts. In our simulations, as proof of the reliability and robustness of the fuzzy controller, two scenarios including noise -disturbance-free and noisy-disturbed situations are considered. The comparisons made between the classical and fuzzy-based controllers reveal the superiority of the proposed fuzzy logic controller, in terms of time response. The simulation results of our experiments in terms of both mathematical modeling and control can be deployed as a baseline for robotics and aerospace studies as developing walking humanoid robots and satellite attitude systems, respectively. | es_ES |
dc.description.sponsorship | The work of U.F.-G. was supported by the government of the Basque Country for the ELKARTEK21/10 KK-2021/00014 and ELKARTEK22/85 research programs, respectively. | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Elsevier | es_ES |
dc.rights | info:eu-repo/semantics/openAccess | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/es/ | * |
dc.subject | dual-axis reaction wheel pendulum | es_ES |
dc.subject | fuzzy logic | es_ES |
dc.subject | fuzzy controller | es_ES |
dc.subject | intelligent control | es_ES |
dc.subject | state feedback | es_ES |
dc.title | Classical and intelligent methods in model extraction and stabilization of a dual-axis reaction wheel pendulum: A comparative study | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.rights.holder | © 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/). | es_ES |
dc.rights.holder | Atribución-NoComercial-SinDerivadas 3.0 España | * |
dc.relation.publisherversion | https://www.sciencedirect.com/science/article/pii/S2590123022003553?via%3Dihub | es_ES |
dc.identifier.doi | 10.1016/j.rineng.2022.100685 | |
dc.departamentoes | Ingeniería Energética | es_ES |
dc.departamentoeu | Energia Ingenieritza | es_ES |