Show simple item record

dc.contributor.authorReichert, Maximilian
dc.contributor.authorDi Candia, Roberto
dc.contributor.authorWin, Moe Z.
dc.contributor.authorSanz Ruiz, Mikel ORCID
dc.date.accessioned2023-02-01T17:50:10Z
dc.date.available2023-02-01T17:50:10Z
dc.date.issued2022-12
dc.identifier.citationNPJ Quantum Information 8(1) : (2022) // Article ID 147es_ES
dc.identifier.issn2056-6387
dc.identifier.urihttp://hdl.handle.net/10810/59600
dc.description.abstractWe propose a quantum-enhanced lidar system to estimate a target’s radial velocity, which employs squeezed and frequency-entangled signal and idler beams. We compare its performance against a classical protocol using a coherent state with the same pulse duration and energy, showing that quantum resources provide a precision enhancement in the estimation of the velocity of the object. We identify three distinct parameter regimes characterized by the amount of squeezing and frequency entanglement. In two of them, a quantum advantage exceeding the standard quantum limit is achieved assuming no photon losses. Additionally, we show that an optimal measurement to attain these results in the lossless case is frequency-resolved photon counting. Finally, we consider the effect of photon losses for the high-squeezing regime, which leads to a constant factor quantum advantage higher than 3 dB in the variance of the estimator, given a roundtrip lidar-to-target-to-lidar transmissivity larger than 50%.es_ES
dc.description.sponsorshipWe thank Robert Jonsson, Göran Johansson and Benjamin Huard for insightful discussions. We acknowledge financial support from Basque Government QUANTEK project from ELKARTEK program (KK-2021/00070) and the Basque Government project IT1470-22, Spanish Ramón y Cajal Grant RYC-2020-030503-I and the project grant PID2021-125823NA-I00 funded by MCIN/AEI/10.13039/501100011033 and by “ERDF A way of making Europe” and “ERDF Invest in your Future”, as well as from QMiCS (820505) and OpenSuperQ (820363) projects of the EU Flagship on Quantum Technologies, and the EU FET-Open projects Quromorphic (828826) and EPIQUS (899368). M.R. acknowledges support from UPV/EHU PhD Grant PIF21/289. M.W. acknowledges support from the National Science Foundation under Grant CCF-1956211. R.D.C. acknowledges support from the Marie Skłodowska Curie fellowship number 891517 (MSC-IF Green- MIQUEC), the Alexander von Humboldt Foundation, the Knut and Alice Wallenberg Foundation through the Wallenberg Centre for Quantum Technology (WACQT), and the Academy of Finland, grants nos. 353832, 349199.es_ES
dc.language.isoenges_ES
dc.publisherNaturees_ES
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/820505es_ES
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/820363es_ES
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/828826es_ES
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/899368es_ES
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/891517es_ES
dc.relationinfo:eu-repo/grantAgreement/MICINN/RYC-2020-030503-Ies_ES
dc.relationinfo:eu-repo/grantAgreement/MICINN/PID2021-125823NA-I00es_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.titleQuantum-enhanced Doppler lidares_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.holder© The Author(s) 2022. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.es_ES
dc.rights.holderAtribución 3.0 España*
dc.relation.publisherversionhttps://www.nature.com/articles/s41534-022-00662-9es_ES
dc.identifier.doi10.1038/s41534-022-00662-9
dc.contributor.funderEuropean Commission
dc.departamentoesQuímica físicaes_ES
dc.departamentoeuKimika fisikoaes_ES


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

© The Author(s) 2022. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
Except where otherwise noted, this item's license is described as © The Author(s) 2022. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.