Show simple item record

dc.contributor.authorUralde Arrue, Jokin
dc.contributor.authorArtetxe Lázaro, Eneko ORCID
dc.contributor.authorBarambones Caramazana, Oscar ORCID
dc.contributor.authorCalvo Gordillo, Isidro
dc.contributor.authorFernández Bustamante, Pablo
dc.contributor.authorMartín Toral, Imanol
dc.date.accessioned2023-02-13T14:55:32Z
dc.date.available2023-02-13T14:55:32Z
dc.date.issued2023-02-03
dc.identifier.citationSensors 23(3) : (2023) // Article ID 1690es_ES
dc.identifier.issn1424-8220
dc.identifier.urihttp://hdl.handle.net/10810/59775
dc.description.abstractPiezoelectric actuators (PEA) are high-precision devices used in applications requiring micrometric displacements. However, PEAs present non-linearity phenomena that introduce drawbacks at high precision applications. One of these phenomena is hysteresis, which considerably reduces their performance. The introduction of appropriate control strategies may improve the accuracy of the PEAs. This paper presents a high precision control scheme to be used at PEAs based on the model-based predictive control (MPC) scheme. In this work, the model used to feed the MPC controller has been achieved by means of artificial neural networks (ANN). This approach simplifies the obtaining of the model, since the achievement of a precise mathematical model that reproduces the dynamics of the PEA is a complex task. The presented approach has been embedded over the dSPACE control platform and has been tested over a commercial PEA, supplied by Thorlabs, conducting experiments to demonstrate improvements of the MPC. In addition, the results of the MPC controller have been compared with a proportional-integral-derivative (PID) controller. The experimental results show that the MPC control strategy achieves higher accuracy at high precision PEA applications such as tracking periodic reference signals and sudden reference change.es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectpiezoelectric actuatorses_ES
dc.subjecthysteresises_ES
dc.subjectcontrol systemses_ES
dc.subjectneural networkses_ES
dc.subjectmodel predictive controller (MPC)es_ES
dc.titleUltraprecise Controller for Piezoelectric Actuators Based on Deep Learning and Model Predictive Controles_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.date.updated2023-02-10T14:29:10Z
dc.rights.holder© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/ 4.0/).es_ES
dc.relation.publisherversionhttps://www.mdpi.com/1424-8220/23/3/1690es_ES
dc.identifier.doi10.3390/s23031690
dc.departamentoesIngeniería de sistemas y automática
dc.departamentoesIngeniería eléctrica
dc.departamentoeuSistemen ingeniaritza eta automatika
dc.departamentoeuIngeniaritza elektrikoa


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/ 4.0/).
Except where otherwise noted, this item's license is described as © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/ 4.0/).