dc.contributor.author | Piqué, Oriol | |
dc.contributor.author | Low, Qi Hang | |
dc.contributor.author | Handoko, Albertus D. | |
dc.contributor.author | Yeo, Boon Siang | |
dc.contributor.author | Calle Vallejo, Federico | |
dc.date.accessioned | 2023-03-22T17:48:02Z | |
dc.date.available | 2023-03-22T17:48:02Z | |
dc.date.issued | 2021-02-01 | |
dc.identifier.citation | Angewandte Chemie 133(19) : 10879-10885 (2021) | es_ES |
dc.identifier.issn | 0044-8249 | |
dc.identifier.issn | 1521-3757 | |
dc.identifier.uri | http://hdl.handle.net/10810/60460 | |
dc.description.abstract | The electrochemical CO and CO2 reduction reactions (CORR and CO2RR) using copper catalysts and renewable electricity hold promise as a carbon-neutral route to produce commodity chemicals and fuels. However, the exact mechanisms and structure sensitivity of Cu electrodes toward C2 products are still under debate. Herein, we investigate ethylene oxide reduction (EOR) as a proxy to the late stages of
CORR to ethylene, and the results are compared to those of acetaldehyde reduction to ethanol. DFT calculations show that ethylene oxide undergoes ring opening before exclusively reducing to ethylene via *OH formation. A selectivity map for the late stages of CORR and CO2RR based on generalized coordination numbers ( CN ) shows that sites with moderate coordination ( 5.9 < CN < 7.5 ) are efficient for ethylene production, with pristine Cu(100) being more active than defective surfaces such as Cu(311). In contrast, kinks and edges are more active for ethanol production, and (111) terraces are relatively inert. | es_ES |
dc.description.sponsorship | F.C.-V. acknowledges funding from Spanish MICIUN RTI2018-095460-B-I00, RYC-2015-18996 and María de Maeztu MDM-2017-0767 grants, and partly by Generalitat de Catalunya 2017SGR13. O.P. thanks the Spanish MICIUN for a PhD grant (PRE2018-083811). We thank Red Española de Supercomputación (RES) for supercomputing time at SCAYLE (projects QS-2019-3-0018, QS-2019-2-0023, and QCM-2019-1-0034), MareNostrum (project QS-2020-1-0012), and CENITS (project QS-2020-2-0021). The use of supercomputing facilities at SURFsara was sponsored by NWO Physical Sciences, with financial support by NWO. Q.H.L. and B.S.Y. acknowledge funding from the National University of Singapore (R-143-000-B52-114 and R-143-000-A64-114), National University of Singapore Flagship Green Energy Program (R-143-000-A55-733 and R-143-000-A55-646), and the Solar Energy Research Institute of Singapore (SERIS). | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Wiley | es_ES |
dc.relation | info:eu-repo/grantAgreement/MICIUN/RTI2018-095460-B-I0 | es_ES |
dc.rights | info:eu-repo/semantics/openAccess | es_ES |
dc.title | Selectivity Map for the Late Stages of CO and CO2 Reduction to C2 Species on Cu Electrodes | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.rights.holder | (c) 2021 Wiley | es_ES |
dc.relation.publisherversion | https://onlinelibrary.wiley.com/doi/10.1002/ange.202014060 | es_ES |
dc.identifier.doi | 10.1002/anie.202014060 | |
dc.departamentoes | Polímeros y Materiales Avanzados: Física, Química y Tecnología | es_ES |
dc.departamentoeu | Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia | es_ES |