Show simple item record

dc.contributor.authorFernández Martínez, Roberto ORCID
dc.contributor.authorJimbert Lacha, Pedro José ORCID
dc.contributor.authorSumner, Eric Michael
dc.contributor.authorRiedel, Morris
dc.contributor.authorUnnthorsson, Runar
dc.date.accessioned2023-03-29T15:58:56Z
dc.date.available2023-03-29T15:58:56Z
dc.date.issued2023-03-01
dc.identifier.citationAcoustics 5(1) : 254-267 (2023)es_ES
dc.identifier.issn2624-599X
dc.identifier.urihttp://hdl.handle.net/10810/60564
dc.description.abstractThe generation of a virtual, personal, auditory space to obtain a high-quality sound experience when using headphones is of great significance. Normally this experience is improved using personalized head-related transfer functions (HRTFs) that depend on a large degree of personal anthropometric information on pinnae. Most of the studies focus their personal auditory optimization analysis on the study of amplitude versus frequency on HRTFs, mainly in the search for significant elevation cues of frequency maps. Therefore, knowing the HRTFs of each individual is of considerable help to improve sound quality. The following work proposes a methodology to model HRTFs according to the individual structure of pinnae using multilayer perceptron and linear regression techniques. It is proposed to generate several models that allow knowing HRTFs amplitude for each frequency based on the personal anthropometric data on pinnae, the azimuth angle, and the elevation of the sound source, thus predicting frequency magnitudes. Experiments show that the prediction of new personal HRTF generates low errors, thus this model can be applied to new heads with different pinnae characteristics with high confidence. Improving the results obtained with the standard KEMAR pinna, usually used in cases where there is a lack of information.es_ES
dc.description.sponsorshipThe authors wish to thank to the Basque Government for its support through the KK-2019-00033 METALCR2, and the University of the Basque Country UPV/EHU for its support through the MOV21/03.es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjecthead related transfer functiones_ES
dc.subjectvirtual auditory spacees_ES
dc.subjectartificial neural networkes_ES
dc.subjectlinear regressiones_ES
dc.subjectmodeling methodologyes_ES
dc.subjectmultilayer perceptrones_ES
dc.titlePrediction of Head Related Transfer Functions Using Machine Learning Approacheses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.date.updated2023-03-28T12:55:53Z
dc.rights.holder© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/ 4.0/).es_ES
dc.relation.publisherversionhttps://www.mdpi.com/2624-599X/5/1/15es_ES
dc.identifier.doi10.3390/acoustics5010015
dc.departamentoesExpresión gráfica y proyectos de ingeniería
dc.departamentoesIngeniería eléctrica
dc.departamentoeuAdierazpen grafikoa eta ingeniaritzako proiektuak
dc.departamentoeuIngeniaritza elektrikoa


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/ 4.0/).
Except where otherwise noted, this item's license is described as © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/ 4.0/).