Show simple item record

dc.contributor.authorBorca, Bogdana
dc.contributor.authorMichnowicz, Tomasz
dc.contributor.authorAguilar Galindo, Fernando
dc.contributor.authorPétuya, Rémi
dc.contributor.authorPristl, Marcel
dc.contributor.authorSchendel, Verena
dc.contributor.authorPentegov, Ivan
dc.contributor.authorKraft, Ulrike
dc.contributor.authorKlauk, Hagen
dc.contributor.authorWahl, Peter
dc.contributor.authorArnau Pino, Andrés ORCID
dc.contributor.authorSchlickum, Uta
dc.date.accessioned2023-04-26T17:07:55Z
dc.date.available2023-04-26T17:07:55Z
dc.date.issued2023-02
dc.identifier.citationThe Journal of Physical Chemistry Letters 14(8) : 2072-2077 (2023)es_ES
dc.identifier.issn1948-7185
dc.identifier.urihttp://hdl.handle.net/10810/60942
dc.description.abstractThe changes of properties and preferential interactions based on subtle energetic differences are important characteristics of organic molecules, particularly for their functionalities in biological systems. Only slightly energetically favored interactions are important for the molecular adsorption and bonding to surfaces, which define their properties for further technological applications. Here, prochiral tetracenothiophene molecules are adsorbed on the Cu(111) surface. The chiral adsorption configurations are determined by Scanning Tunneling Microscopy studies and confirmed by first-principles calculations. Remarkably, the selection of the adsorption sites by chemically different moieties of the molecules is dictated by the arrangement of the atoms in the first and second surface layers. Furthermore, we have investigated the thermal effects on the direct desulfurization reaction that occurs under the catalytic activity of the Cu substrate. This reaction leads to a product that is covalently bound to the surface in chiral configurations.es_ES
dc.description.sponsorshipThe authors acknowledge the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy-EXC-2123 Quantum Frontiers - 390837967; Core program PC2-PN23080202 and the PN-III-P2-2.1-PED-2021-0378 (contract no. 575PED/2022) granted projects, financed by the Romanian Ministry of Research, Innovation and Digitalization/UEFISCDI; and the generous allocation of computer time at the computing center of Donostia International Physics Center and at the Red Española de Supercomputación (project QHS-2021-2-0019). A.A. acknowledges support from Project No. PID2019-103910GB-I00, funded by MCIN/AEI/10.13039/501100011033/ and FEDER Una manera de hacer Europa, and Project No. IT-1527-22 funded by the Basque Government. Open access funded by Max Planck Society.es_ES
dc.language.isoenges_ES
dc.publisherAmerican Chemical Societyes_ES
dc.relationinfo:eu-repo/grantAgreement/MICINN/PID2019-103910GB-I00es_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.titleChiral and Catalytic Effects of Site-Specific Molecular Adsorptiones_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.holder© 2023 The Authors. Published by American Chemical Society. Attribution 4.0 International (CC BY 4.0)es_ES
dc.rights.holderAtribución 3.0 España*
dc.relation.publisherversionhttps://pubs.acs.org/doi/10.1021/acs.jpclett.2c03575es_ES
dc.identifier.doi10.1021/acs.jpclett.2c03575
dc.departamentoesPolímeros y Materiales Avanzados: Física, Química y Tecnologíaes_ES
dc.departamentoeuPolimero eta Material Aurreratuak: Fisika, Kimika eta Teknologiaes_ES


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

© 2023 The Authors. Published by American Chemical Society. Attribution 4.0 International (CC BY 4.0)
Except where otherwise noted, this item's license is described as © 2023 The Authors. Published by American Chemical Society. Attribution 4.0 International (CC BY 4.0)