Show simple item record

dc.contributor.authorGundogdu, Kaan
dc.contributor.authorOrus Iturriza, Ander
dc.contributor.authorOrruño Beltrán, Maite ORCID
dc.contributor.authorMontánchez Alonso, Itxaso ORCID
dc.contributor.authorEguiraun Martínez, Harkaitz
dc.contributor.authorMartínez Galarza, María Iciar ORCID
dc.contributor.authorArana Basabe, María Inés ORCID
dc.contributor.authorKaberdin, Vladimir
dc.date.accessioned2023-04-28T14:41:46Z
dc.date.available2023-04-28T14:41:46Z
dc.date.issued2023-04-20
dc.identifier.citationMicroorganisms 11(4) : (2023) // Article ID 1075es_ES
dc.identifier.issn2076-2607
dc.identifier.urihttp://hdl.handle.net/10810/60976
dc.description.abstractGlobal warming and acidification of the global ocean are two important manifestations of the ongoing climate change. To characterize their joint impact on Vibrio adaptation and fitness, we analyzed the temperature-dependent adaptation of Vibrio harveyi at different pHs (7.0, 7.5, 8.0, 8.3 and 8.5) that mimic the pH of the world ocean in the past, present and future. Comparison of V. harveyi growth at 20, 25 and 30 °C show that higher temperature per se facilitates the logarithmic growth of V. harveyi in nutrient-rich environments in a pH-dependent manner. Further survival tests carried out in artificial seawater for 35 days revealed that cell culturability declined significantly upon incubation at 25 °C and 30 °C but not at 20 °C. Moreover, although acidification displayed a negative impact on cell culturability at 25 °C, it appeared to play a minor role at 30 °C, suggesting that elevated temperature, rather than pH, was the key player in the observed reduction of cell culturability. In addition, analyses of the stressed cell morphology and size distribution by epifluorescent microscopy indicates that V. harveyi likely exploits different adaptation strategies (e.g., acquisition of coccoid-like morphology) whose roles might differ depending on the temperature–pH combination.es_ES
dc.description.sponsorshipThe work was supported by IKERBASQUE (Basque Foundation for Science) as well as by Basque Government Grants PIBA_2021_1_0047 and MIMAS IT1657-22.es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectclimate changees_ES
dc.subjectocean acidificationes_ES
dc.subjectVibrio survivales_ES
dc.subjectcoccoid-like cellses_ES
dc.subjectadaptation strategieses_ES
dc.titleAddressing the Joint Impact of Temperature and pH on Vibrio harveyi Adaptation in the Time of Climate Changees_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.date.updated2023-04-27T13:51:13Z
dc.rights.holder© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/ 4.0/).es_ES
dc.relation.publisherversionhttps://www.mdpi.com/2076-2607/11/4/1075es_ES
dc.identifier.doi10.3390/microorganisms11041075
dc.departamentoesExpresión gráfica y proyectos de ingeniería
dc.departamentoesInmunología, microbiología y parasitología
dc.departamentoesZoología y biología celular animal
dc.departamentoeuAdierazpen grafikoa eta ingeniaritzako proiektuak
dc.departamentoeuImmunologia, mikrobiologia eta parasitologia
dc.departamentoeuZoologia eta animalia zelulen biologia


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/ 4.0/).
Except where otherwise noted, this item's license is described as © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/ 4.0/).