dc.contributor.author | Montaño Priede, José Luis | |
dc.contributor.author | Sanromán Iglesias, María | |
dc.contributor.author | Zabala Unzalu, Miren Nerea | |
dc.contributor.author | Grzelczak, Marek | |
dc.contributor.author | Aizpurua, Javier | |
dc.date.accessioned | 2023-05-15T14:58:39Z | |
dc.date.available | 2023-05-15T14:58:39Z | |
dc.date.issued | 2023-04 | |
dc.identifier.citation | ACS Sensors 8(4) : 1827-1834 (2023) | es_ES |
dc.identifier.issn | 2379-3694 | |
dc.identifier.uri | http://hdl.handle.net/10810/61117 | |
dc.description.abstract | Spurred by outstanding optical properties, chemical stability, and facile bioconjugation, plasmonic metals have become the first-choice materials for optical signal transducers in biosensing. While the design rules for surface-based plasmonic sensors are well-established and commercialized, there is limited knowledge of the design of sensors based on nanoparticle aggregation. The reason is the lack of control over the interparticle distances, number of nanoparticles per cluster, or multiple mutual orientations during aggregation events, blurring the threshold between positive and negative readout. Here we identify the geometrical parameters (size, shape, and interparticle distance) that allow for maximizing the color difference upon nanoparticle clustering. Finding the optimal structural parameters will provide a fast and reliable means of readout, including unaided eye inspection or computer vision. | es_ES |
dc.description.sponsorship | J.L.M.-P., N.Z., and J.A. acknowledge financial support from Spanish MICIN/AE/DOI 10.13039/501100004837, Reg. No. PID2019-107432GB-I00 and from the Department of Education of the Basque Government under Project IT1526-22. M.G. acknowledges Euskampus Foundation for financial support (Resilience COVID19). This work received computational support from DIPC's HPC cluster ATLAS, operated by DIPC Supercomputing Center. | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | American Chemical Society | es_ES |
dc.relation | info:eu-repo/grantAgreement/MICINN/PID2019-107432GB-I00 | es_ES |
dc.rights | info:eu-repo/semantics/openAccess | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by/3.0/es/ | * |
dc.subject | colorimetric sensing | es_ES |
dc.subject | gold nanoparticles | es_ES |
dc.subject | geometrical parameters | es_ES |
dc.subject | clustering | es_ES |
dc.subject | numerical spectra | es_ES |
dc.subject | color difference | es_ES |
dc.subject | RGB color space | es_ES |
dc.subject | HSV color space | es_ES |
dc.title | Robust Rules for Optimal Colorimetric Sensing Based on Gold Nanoparticle Aggregation | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.rights.holder | © 2023 The Authors. Published by American Chemical Society. Attribution 4.0 International (CC BY 4.0) | es_ES |
dc.rights.holder | Atribución 3.0 España | * |
dc.relation.publisherversion | https://pubs.acs.org/doi/10.1021/acssensors.3c00287 | es_ES |
dc.identifier.doi | 10.1021/acssensors.3c00287 | |
dc.departamentoes | Electricidad y electrónica | es_ES |
dc.departamentoeu | Elektrizitatea eta elektronika | es_ES |