Show simple item record

dc.contributor.authorMontaño Priede, José Luis
dc.contributor.authorSanromán Iglesias, María
dc.contributor.authorZabala Unzalu, Miren Nerea
dc.contributor.authorGrzelczak, Marek
dc.contributor.authorAizpurua, Javier
dc.date.accessioned2023-05-15T14:58:39Z
dc.date.available2023-05-15T14:58:39Z
dc.date.issued2023-04
dc.identifier.citationACS Sensors 8(4) : 1827-1834 (2023)es_ES
dc.identifier.issn2379-3694
dc.identifier.urihttp://hdl.handle.net/10810/61117
dc.description.abstractSpurred by outstanding optical properties, chemical stability, and facile bioconjugation, plasmonic metals have become the first-choice materials for optical signal transducers in biosensing. While the design rules for surface-based plasmonic sensors are well-established and commercialized, there is limited knowledge of the design of sensors based on nanoparticle aggregation. The reason is the lack of control over the interparticle distances, number of nanoparticles per cluster, or multiple mutual orientations during aggregation events, blurring the threshold between positive and negative readout. Here we identify the geometrical parameters (size, shape, and interparticle distance) that allow for maximizing the color difference upon nanoparticle clustering. Finding the optimal structural parameters will provide a fast and reliable means of readout, including unaided eye inspection or computer vision.es_ES
dc.description.sponsorshipJ.L.M.-P., N.Z., and J.A. acknowledge financial support from Spanish MICIN/AE/DOI 10.13039/501100004837, Reg. No. PID2019-107432GB-I00 and from the Department of Education of the Basque Government under Project IT1526-22. M.G. acknowledges Euskampus Foundation for financial support (Resilience COVID19). This work received computational support from DIPC's HPC cluster ATLAS, operated by DIPC Supercomputing Center.es_ES
dc.language.isoenges_ES
dc.publisherAmerican Chemical Societyes_ES
dc.relationinfo:eu-repo/grantAgreement/MICINN/PID2019-107432GB-I00es_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.subjectcolorimetric sensinges_ES
dc.subjectgold nanoparticleses_ES
dc.subjectgeometrical parameterses_ES
dc.subjectclusteringes_ES
dc.subjectnumerical spectraes_ES
dc.subjectcolor differencees_ES
dc.subjectRGB color spacees_ES
dc.subjectHSV color spacees_ES
dc.titleRobust Rules for Optimal Colorimetric Sensing Based on Gold Nanoparticle Aggregationes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.holder© 2023 The Authors. Published by American Chemical Society. Attribution 4.0 International (CC BY 4.0)es_ES
dc.rights.holderAtribución 3.0 España*
dc.relation.publisherversionhttps://pubs.acs.org/doi/10.1021/acssensors.3c00287es_ES
dc.identifier.doi10.1021/acssensors.3c00287
dc.departamentoesElectricidad y electrónicaes_ES
dc.departamentoeuElektrizitatea eta elektronikaes_ES


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

© 2023 The Authors. Published by American Chemical Society. Attribution 4.0 International (CC BY 4.0)
Except where otherwise noted, this item's license is described as © 2023 The Authors. Published by American Chemical Society. Attribution 4.0 International (CC BY 4.0)