Show simple item record

dc.contributor.authorLópez Zorrilla, Jon
dc.contributor.authorMéndez Aretxabaleta, Xabier
dc.contributor.authorYeu, In Won
dc.contributor.authorEtxebarria Altzaga, Iñigo ORCID
dc.contributor.authorManzano Moro, Hegoi ORCID
dc.contributor.authorArtrith, Nongnuch
dc.date.accessioned2023-05-16T17:32:04Z
dc.date.available2023-05-16T17:32:04Z
dc.date.issued2023-04
dc.identifier.citationThe Journal of Chemical Physics 158(16) : (2023) // Article ID 164105es_ES
dc.identifier.issn1089-7690
dc.identifier.urihttp://hdl.handle.net/10810/61129
dc.description.abstractIn this work, we present ænet-PyTorch, a PyTorch-based implementation for training artificial neural network-based machine learning interatomic potentials. Developed as an extension of the atomic energy network (ænet), ænet-PyTorch provides access to all the tools included in ænet for the application and usage of the potentials. The package has been designed as an alternative to the internal training capabilities of ænet, leveraging the power of graphic processing units to facilitate direct training on forces in addition to energies. This leads to a substantial reduction of the training time by one to two orders of magnitude compared to the central processing unit implementation, enabling direct training on forces for systems beyond small molecules. Here, we demonstrate the main features of ænet-PyTorch and show its performance on open databases. Our results show that training on all the force information within a dataset is not necessary, and including between 10% and 20% of the force information is sufficient to achieve optimally accurate interatomic potentials with the least computational resources.es_ES
dc.description.sponsorshipThis work was supported by the “Departamento de Educación, Política Lingüística y Cultura del Gobierno Vasco” (IT1458-22), the “Ministerio de Ciencia e Innovación” (Grant No. PID2019-106644GB-I00), and the Project HPC-EUROPA3 (Grant No. INFRAIA-2016-1-730897), with the support of the EC Research Innovation Action under the H2020 Programme. The authors acknowledge technical and human support provided by SGIker (UPV/EHU/ERDF, EU) and the Duch National e-Infrastructure and the SURF Cooperative for computational resources (National Supercomputer Snellius). J.L.-Z. acknowledges financial support from the Basque Country Government (PRE_2019_1_0025). N.A. acknowledges funding from the Bayer AG Life Science Collaboration (“!AIQU”).es_ES
dc.language.isoenges_ES
dc.publisherAIPes_ES
dc.relationinfo:eu-repo/grantAgreement/MICINN/PID2019-106644GB-I00es_ES
dc.relationinfo:eu-repo/grantAgreement/EC/2020/730897es_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.titleænet-PyTorch: A GPU-supported implementation for machine learning atomic potentials traininges_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.holder© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).es_ES
dc.rights.holderAtribución 3.0 España*
dc.relation.publisherversionhttps://pubs.aip.org/aip/jcp/article/158/16/164105/2885330/anet-PyTorch-A-GPU-supported-implementation-fores_ES
dc.identifier.doi10.1063/5.0146803
dc.contributor.funderEuropean Commission
dc.departamentoesFísicaes_ES
dc.departamentoeuFisikaes_ES


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/).
Except where otherwise noted, this item's license is described as © 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).