Show simple item record

dc.contributor.authorArejita, Beñat
dc.contributor.authorGarmendia, Iker
dc.contributor.authorIsaza, Juan Fernando
dc.contributor.authorLamikiz Mentxaka, Aitzol
dc.date.accessioned2023-05-19T17:13:42Z
dc.date.available2023-05-19T17:13:42Z
dc.date.issued2022-09
dc.identifier.citationProcedia CIRP 111 : 308-312 (2022)es_ES
dc.identifier.issn2212-8271
dc.identifier.urihttp://hdl.handle.net/10810/61181
dc.description.abstractThe quality of an LMD manufactured object highly depends on different process parameters such as the speed of powder deposition, the applied laser power, the powder feed rate, and other physical parameters such as the substrate temperature, resulting in a complex process. Consequently, applying corrections to the process parameters can be critical to improving the properties of the manufactured part. Some control approaches rely on open-loop techniques that use physical models and expert knowledge to adjust the tool path program in advance to compensate for deviations from the theoretical 3D model. Other approaches apply closed-loop control techniques to either control the melt pool during the process or adjust the tool path between layer depositions. This work presents a closed-loop control algorithm that dynamically controls three critical process parameters: the melt pool size, deposition speed, and standoff distance, combining data from a laser line profiler and a high-speed infrared camera.es_ES
dc.description.sponsorshipThe work presented in this publication has received funding from the European Union’s Horizon 2020 research and innovation programme within the framework of the Pulsate Project funded under grant agreement No [951998] as part of the experiment CESFAM selected in the Pulsate 1 st TTE open call. PULSATE is supported by the Photonics Public Private Partnership.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.relationinfo:eu-repo/grantAgreement/EC/2020/951998es_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subjectadditive manufacturinges_ES
dc.subjectlaser metal depositiones_ES
dc.subjectdynamic process controles_ES
dc.subjectedge computinges_ES
dc.subjectindustry 4.0es_ES
dc.titleDynamic control for LMD processes using sensor fusion and edge computinges_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.holder© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)es_ES
dc.rights.holderAtribución-NoComercial-SinDerivadas 3.0 España*
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S2212827122009040?via%3Dihubes_ES
dc.identifier.doi10.1016/j.procir.2022.08.026
dc.contributor.funderEuropean Commission
dc.departamentoesIngeniería mecánicaes_ES
dc.departamentoeuIngeniaritza mekanikoaes_ES


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

© 2022 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Except where otherwise noted, this item's license is described as © 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)