dc.contributor.author | Merino Bermejo, Ibon | |
dc.contributor.author | Azpiazu Lozano, Jon | |
dc.contributor.author | Remazeilles, Anthony | |
dc.contributor.author | Sierra Araujo, Basilio | |
dc.date.accessioned | 2023-06-30T16:57:02Z | |
dc.date.available | 2023-06-30T16:57:02Z | |
dc.date.issued | 2023-07 | |
dc.identifier.citation | Neurocomputing 541 : (2023) // Article ID 126270 | es_ES |
dc.identifier.issn | 0925-2312 | |
dc.identifier.issn | 1872-8286 | |
dc.identifier.uri | http://hdl.handle.net/10810/61846 | |
dc.description.abstract | Deep learning methods have revolutionized computer vision since the appearance of AlexNet in 2012. Nevertheless, 6 degrees of freedom pose estimation is still a difficult task to perform precisely. Therefore, we propose 2 ensemble techniques to refine poses from different deep learning 6DoF pose estimation models. The first technique, merge ensemble, combines the outputs of the base models geometrically. In the second, stacked generalization, a machine learning model is trained using the outputs of the base models and outputs the refined pose. The merge method improves the performance of the base models on LMO and YCB-V datasets and performs better on the pose estimation task than the stacking strategy. | es_ES |
dc.description.sponsorship | This paper has been supported by the project PROFLOW under the Basque program ELKARTEK, grant agreement No. KK-2022/00024. | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Elsevier | es_ES |
dc.rights | info:eu-repo/semantics/openAccess | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/es/ | * |
dc.subject | deep learning | es_ES |
dc.subject | pose estimation | es_ES |
dc.subject | ensemble | es_ES |
dc.subject | stacked generalization | es_ES |
dc.title | Ensemble of 6 DoF Pose estimation from state-of-the-art deep methods. | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.rights.holder | © 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/) | es_ES |
dc.rights.holder | Atribución-NoComercial-SinDerivadas 3.0 España | * |
dc.relation.publisherversion | https://www.sciencedirect.com/science/article/pii/S0925231223003934 | es_ES |
dc.identifier.doi | 10.1016/j.neucom.2023.126270 | |
dc.departamentoes | Ciencia de la computación e inteligencia artificial | es_ES |
dc.departamentoeu | Konputazio zientziak eta adimen artifiziala | es_ES |