Show simple item record

dc.contributor.authorGauthier, Laurent
dc.contributor.authorSaati, Mahasen
dc.contributor.authorBensalah‑Pigeon, Hayet
dc.contributor.authorBen M’Barek, Karim
dc.contributor.authorGitton‑Quent, Oscar
dc.contributor.authorBertrand, Romane
dc.contributor.authorBusso, Didier
dc.contributor.authorMouthon, Marc‑André
dc.contributor.authorCollura, Ada
dc.contributor.authorJunier, Marie‑Pierre
dc.contributor.authorChneiweiss, Hervé
dc.contributor.authorPineda Martí, José Ramón ORCID
dc.contributor.authorBoussin, François D.
dc.date.accessioned2023-07-05T16:02:02Z
dc.date.available2023-07-05T16:02:02Z
dc.date.issued2020-10-30
dc.identifier.citationScientific Reports 10 : (2020) // Article ID 18742es_ES
dc.identifier.issn2045-2322
dc.identifier.urihttp://hdl.handle.net/10810/61891
dc.description.abstractHuman glioblastoma (GBM) is the most common primary malignant brain tumor. A minor subpopulation of cancer cells, known as glioma stem-like cells (GSCs), are thought to play a major role in tumor relapse due to their stem cell-like properties, their high resistance to conventional treatments and their high invasion capacity. We show that ionizing radiation specifically enhances the motility and invasiveness of human GSCs through the stabilization and nuclear accumulation of the hypoxia-inducible factor 1α (HIF1α), which in turn transcriptionally activates the Junction-mediating and regulatory protein (JMY). Finally, JMY accumulates in the cytoplasm where it stimulates GSC migration via its actin nucleation-promoting activity. Targeting JMY could thus open the way to the development of new therapeutic strategies to improve the efficacy of radiotherapy and prevent glioma recurrence.es_ES
dc.description.sponsorshipThe authors thank members of the LRP for helpful discussions and are indebted to V. Barroca and the staff of the animal facilities and to N. Deschamps and J. Baijer for cell sorting. We also thanks I. Naguibneva for the gift of the pTRIP shHIF1α plasmid. MS is the recipient of a doctoral fellowship from the Ministère de la Recherche. This work was supported by grants from CEA (Segment Radiobiologie), La Ligue contre le Cancer (Comité d’Ile de France), Electricité de France (EDF), Fondation de France (N° Engt: 2013-00042632) and Ramón y Cajal program (RYC-2013-13450).es_ES
dc.language.isoenges_ES
dc.publisherSpringer Naturees_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.titleThe HIF1α/JMY pathway promotes glioblastoma stem-like cell invasiveness after irradiationes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.holder(cc) 2020 This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.es_ES
dc.relation.publisherversionhttps://www.nature.com/articles/s41598-020-75300-5es_ES
dc.identifier.doi10.1038/s41598-020-75300-5
dc.departamentoesBiología celular e histologíaes_ES
dc.departamentoeuZelulen biologia eta histologiaes_ES


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

(cc) 2020  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Except where otherwise noted, this item's license is described as (cc) 2020 This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.