Show simple item record

dc.contributor.authorInziarte Hidalgo, Ibai
dc.contributor.authorGorospe, Erik
dc.contributor.authorZulueta Guerrero, Ekaitz
dc.contributor.authorLópez Guede, José Manuel ORCID
dc.contributor.authorFernández Gámiz, Unai
dc.contributor.authorEtxebarria Berrizbeitia, Saioa
dc.date.accessioned2023-10-16T17:43:22Z
dc.date.available2023-10-16T17:43:22Z
dc.date.issued2023-09-30
dc.identifier.citationMathematics 11(19) : (2023) // Article ID 4133es_ES
dc.identifier.issn2227-7390
dc.identifier.urihttp://hdl.handle.net/10810/62852
dc.description.abstractThis research continues the previous work “Robotic-Arm-Based Force Control in Neurosurgical Practice”. In that study, authors acquired an optimal control arm speed shape for neurological surgery which minimized a cost function that uses an adaptive scheme to determine the brain tissue force. At the end, the authors proposed the use of reinforcement learning, more specifically Deep Deterministic Policy Gradient (DDPG), to create an agent that could obtain the optimal solution through self-training. In this article, that proposal is carried out by creating an environment, agent (actor and critic), and reward function, that obtain a solution for our problem. However, we have drawn conclusions for potential future enhancements. Additionally, we analyzed the results and identified mistakes that can be improved upon in the future, such as exploring the use of varying desired distances of retraction to enhance training.es_ES
dc.description.sponsorshipThe authors were supported by the government of the Basque Country through the research grant ELKARTEK KK-2023/00058 DEEPBASK (Creación de nuevos algoritmos de aprendizaje profundo aplicado a la industria). This study has also been conducted partially under the framework of the project ADA (Grants for R&D projects 2022 and supported by the European Regional Development Funds).es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectneurosurgical roboticses_ES
dc.subjectoptimal controles_ES
dc.subjectreinforcement learninges_ES
dc.subjectdeep deterministic policy gradientes_ES
dc.titleRobotic-Arm-Based Force Control by Deep Deterministic Policy Gradient in Neurosurgical Practicees_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.date.updated2023-10-13T12:07:48Z
dc.rights.holder© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).es_ES
dc.relation.publisherversionhttps://www.mdpi.com/2227-7390/11/19/4133es_ES
dc.identifier.doi10.3390/math11194133
dc.departamentoesIngeniería de sistemas y automática
dc.departamentoesIngeniería mecánica
dc.departamentoesIngeniería nuclear y mecánica de fluidos
dc.departamentoeuIngeniaritza nuklearra eta jariakinen mekanika
dc.departamentoeuSistemen ingeniaritza eta automatika
dc.departamentoeuIngeniaritza mekanikoa


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Except where otherwise noted, this item's license is described as © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).